Folding Schemes with Privacy Preserving Selective Verification

Joan Boyar & Simon Erfurth

University of Southern Denmark

imon@serfurth.dk ⊕ www.serfurth.dk

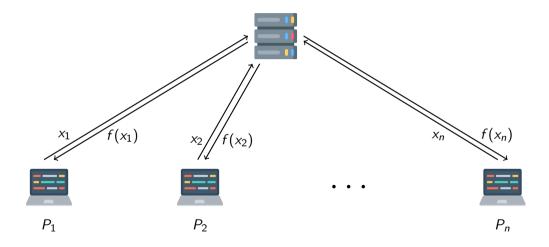
♥ @SimonErfurth ♥ @SimonSErfurth

Motivating Example:

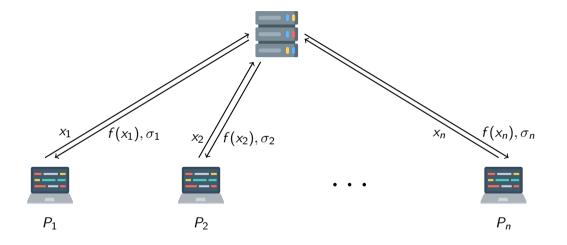
Computation as a Service

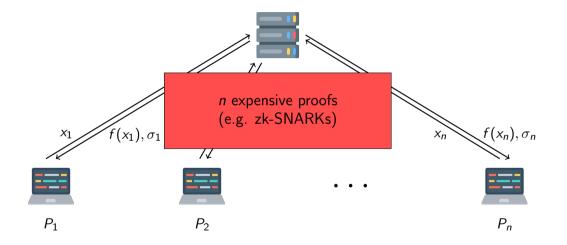
Motivating Example:

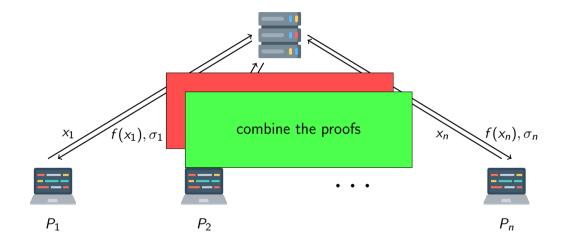
Computation as a Service

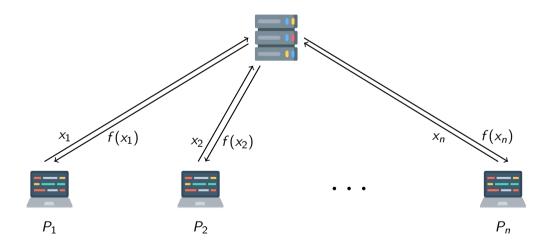


Folding Schemes with Privacy Preserving Selective Verification

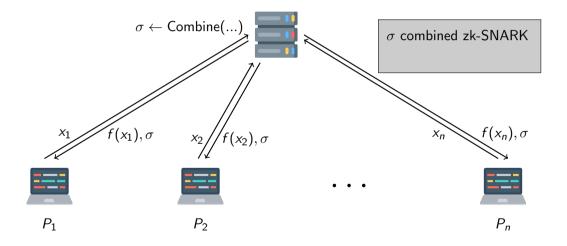


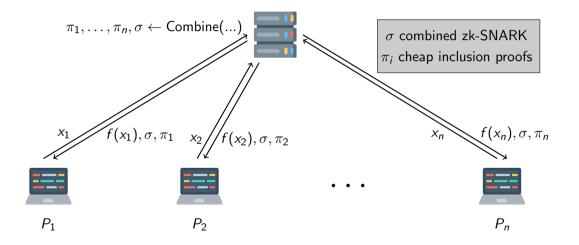






Folding Schemes with Privacy Preserving Selective Verification





Folding Schemes with Privacy Preserving Selective Verification

Folding Scheme

For NP-language \mathcal{L} with relation $\mathcal{R} = \{(x, v) \mid v \text{ is a proof that } x \in \mathcal{L}\},$ folding scheme FS which

Folding Scheme

For NP-language \mathcal{L} with relation $\mathcal{R} = \{(x, v) \mid v \text{ is a proof that } x \in \mathcal{L}\},$ folding scheme FS which

Combines instances:

 $\begin{array}{l} \mathsf{Fold} \colon ((x_1,v_1),(x_2,v_2)) \to (x,v,\pi) \\ (x,v) \in \mathcal{R} \Longleftrightarrow (x_1,v_1), (x_2,v_2) \in \mathcal{R} \end{array}$

Folding Scheme

For NP-language \mathcal{L} with relation $\mathcal{R} = \{(x, v) \mid v \text{ is a proof that } x \in \mathcal{L}\},\$

folding scheme FS which

- Combines instances: Fold: $((x_1, v_1), (x_2, v_2)) \rightarrow (x, v, \pi)$ $(x, v) \in \mathcal{R} \iff (x_1, v_1), (x_2, v_2) \in \mathcal{R}$
- Check statement inclusion FoldVerify: $(x_1, x_2, x, \pi) \rightarrow 0/1$ 1 if π is proof that x_1 and x_2 were folded into x

Folding Scheme

For NP-language \mathcal{L} with relation

 $\mathcal{R} = \{(x, v) \mid v \text{ is a proof that } x \in \mathcal{L}\},$ folding scheme FS which

- Combines instances: Fold: $((x_1, v_1), (x_2, v_2)) \rightarrow (x, v, \pi)$ $(x, v) \in \mathcal{R} \iff (x_1, v_1), (x_2, v_2) \in \mathcal{R}$
- Check statement inclusion FoldVerify: $(x_1, x_2, x, \pi) \rightarrow 0/1$ 1 if π is proof that x_1 and x_2 were folded into x

Example

For
$$A \in \mathbb{F}^{n \times m}$$
; $\mathcal{L}_A = \{x \mid \exists v \colon Av = x\}.$

Folding Scheme

For NP-language \mathcal{L} with relation

 $\mathcal{R} = \{(x, v) \mid v \text{ is a proof that } x \in \mathcal{L}\},$ folding scheme FS which

- Combines instances: Fold: $((x_1, v_1), (x_2, v_2)) \rightarrow (x, v, \pi)$ $(x, v) \in \mathcal{R} \iff (x_1, v_1), (x_2, v_2) \in \mathcal{R}$
- Check statement inclusion
 FoldVerify: (x₁, x₂, x, π) → 0/1
 1 if π is proof that x₁ and x₂ were folded into x

Example

For
$$A \in \mathbb{F}^{n \times m}$$
; $\mathcal{L}_A = \{x \mid \exists v : Av = x\}$.
• Fold $((x_1, v_1), (x_2, v_2))$:
 $\rho \leftarrow_{\$} \mathbb{F}; \pi = \rho;$
 $x = x_1 + \rho x_2; \quad v = v_1 + \rho v_2.$

Folding Scheme

For NP-language \mathcal{L} with relation

 $\mathcal{R} = \{(x, v) \mid v \text{ is a proof that } x \in \mathcal{L}\},$ folding scheme FS which

- Combines instances: Fold: $((x_1, v_1), (x_2, v_2)) \rightarrow (x, v, \pi)$ $(x, v) \in \mathcal{R} \iff (x_1, v_1), (x_2, v_2) \in \mathcal{R}$
- Check statement inclusion
 FoldVerify: (x₁, x₂, x, π) → 0/1
 1 if π is proof that x₁ and x₂ were folded into x

Example

For
$$A \in \mathbb{F}^{n \times m}$$
; $\mathcal{L}_A = \{x \mid \exists v \colon Av = x\}.$

• Fold(
$$(x_1, v_1), (x_2, v_2)$$
):
 $\rho \leftarrow_{\$} \mathbb{F}; \pi = \rho;$

 $x = x_1 + \rho x_2;$ $v = v_1 + \rho v_2.$

• FoldVerify (x_1, x_2, x, π) : check that

$$x = x_1 + \rho x_2.$$

Folding Scheme: Security

Example

Folding Schemes with Privacy Preserving Selective Verification

Folding Scheme: Security

• **Completeness**: No Adv. can output input to Fold in \mathcal{R} , which gives output not in \mathcal{R} (or invalid folding proof).

Example

• Completeness: $(x_1, v_1), (x_2, v_2) \in \mathcal{R}$ then

$$Av = A(v_1 + \rho v_2) = Av_1 + \rho Av_2$$
$$= x_1 + \rho x_2 = x$$

Folding Scheme: Security

- **Completeness**: No Adv. can output input to Fold in \mathcal{R} , which gives output not in \mathcal{R} (or invalid folding proof).
- Knowledge Soundness: From Adv. giving x_1, x_2, x, v, π where $(x, v) \in \mathcal{R}$ and π is accepted, we can extract witness for x_1, x_2 .

Example

• Completeness: $(x_1, v_1), (x_2, v_2) \in \mathcal{R}$ then

$$Av = A(v_1 + \rho v_2) = Av_1 + \rho Av_2$$
$$= x_1 + \rho x_2 = x$$

■ Knowledge Soundness: Run to get x, v, π = ρ and x', v', π' = ρ' for same input.

$$v = v_1 + \rho v_2$$

$$v' = v_1 + \rho' v_2$$

$$\Rightarrow v_2 = (\rho' - \rho)^{-1} (v' - v)$$

From 2-folding to 4-folding

Folding Schemes with Privacy Preserving Selective Verification

From 2-folding to 4-folding

Output of Fold is in $\mathcal{R} \Rightarrow \textbf{Bootstrapping}$

Folding Schemes with Privacy Preserving Selective Verification

From 2-folding to 4-folding

Output of Fold is in $\mathcal{R} \Rightarrow \textbf{Bootstrapping}$

(x_1, v_1) (x_2, v_2) (x_3, v_3) (x_4, v_4)

Folding Schemes with Privacy Preserving Selective Verification Joan E

From 2-folding to 4-folding

Output of Fold is in $\mathcal{R} \Rightarrow \textbf{Bootstrapping}$

$$(x', v', \pi')$$

Fold
 (x_1, v_1) (x_2, v_2) (x_3, v_3) (x_4, v_4)

From 2-folding to 4-folding

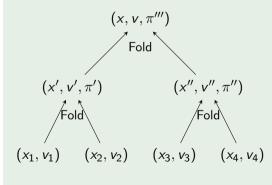
Output of Fold is in $\mathcal{R} \Rightarrow \textbf{Bootstrapping}$

$$(x', v', \pi') \qquad (x'', v'', \pi'')$$
Fold
$$(x_1, v_1) \qquad (x_2, v_2) \qquad (x_3, v_3) \qquad (x_4, v_4)$$

Folding Schemes with Privacy Preserving Selective Verification

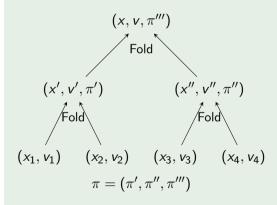
From 2-folding to 4-folding

Output of Fold is in $\mathcal{R} \Rightarrow$ **Bootstrapping**



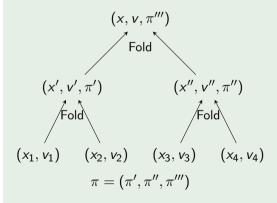
From 2-folding to 4-folding

Output of Fold is in $\mathcal{R} \Rightarrow$ **Bootstrapping**



From 2-folding to 4-folding

Output of Fold is in $\mathcal{R} \Rightarrow \textbf{Bootstrapping}$



From 2-folding to *n*-folding

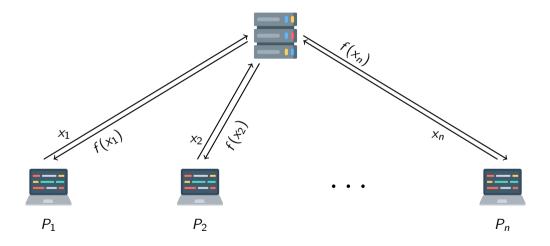
Bigger binary tree construction or:

- **1** Fold $((x_1, v_1), (x_2, v_2)) \rightarrow (x', v', \pi')$
- 2 Fold($(x', v'), (x_3, v_3)$) $\rightarrow (x'', v'', \pi'')$ and let $\pi = (\pi', \pi'')$.

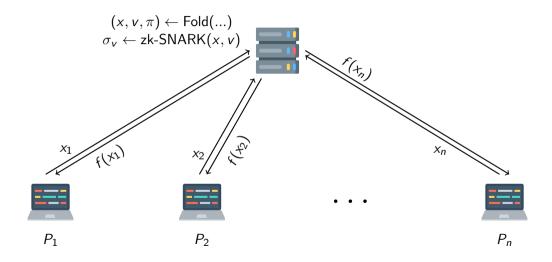
3 ...

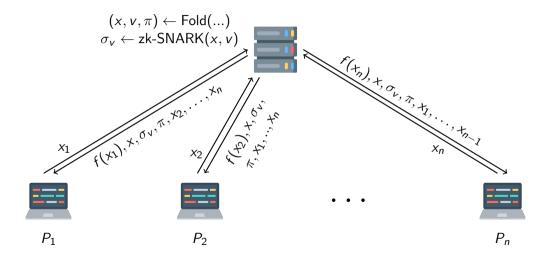
4 Fold
$$((x^{(n-2)}, v^{(n-2)}), (x_n, v_n)) \rightarrow (x, v, \pi^{(n-1)});$$

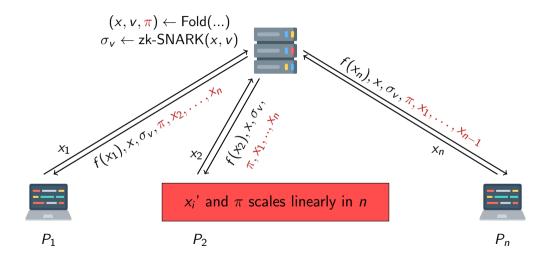
 $\pi = (\pi', \pi'', \dots, \pi^{(n-1)})$



Folding Schemes with Privacy Preserving Selective Verification







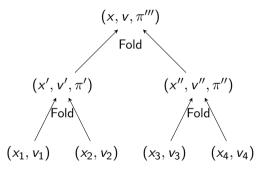
Folding Schemes with Privacy Preserving Selective Verification

Idea

Generate *n* proofs π_i , each containing $O(\log n)$ folding proofs and statements.

Idea

Generate *n* proofs π_i , each containing $O(\log n)$ folding proofs and statements.

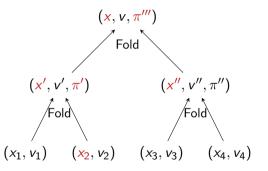


Idea

Generate *n* proofs π_i , each containing $O(\log n)$ folding proofs and statements.

Example

•
$$\pi_1 = \{x_2, x', \pi', x'', x, \pi'''\}$$



Idea

Generate *n* proofs π_i , each containing $O(\log n)$ folding proofs and statements.

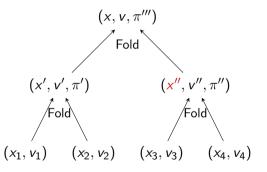
Example

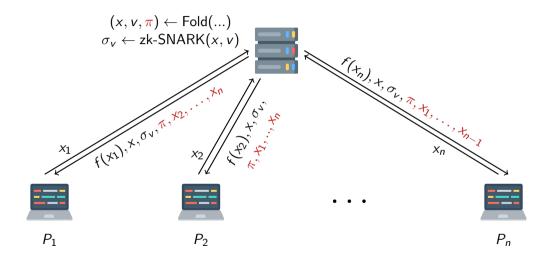
$$\pi_1 = \{x_2, x', \pi', x'', x, \pi'''\}$$

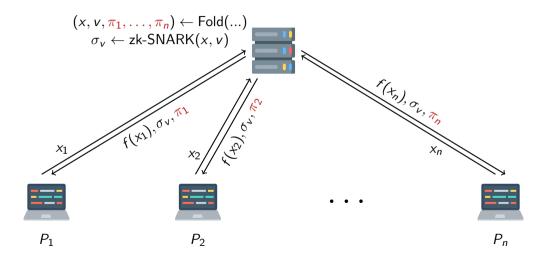
$$\pi_2 = \{x_1, x', \pi', x'', x, \pi'''\}$$

$$\pi_3 = \{x_4, x'', \pi'', x', x, \pi'''\}$$

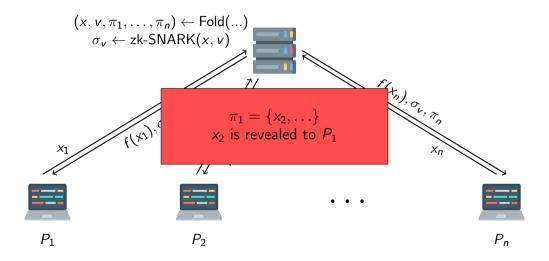
$$\pi_4 = \{x_3, x'', \pi'', x', x, \pi'''\}$$







Motivating Example: Verifiable Computation as a Service



Idea

Folding scheme hiding others' statements.

Idea

Folding scheme hiding others' statements.

NP statement hider

Hide each instance (x, v) as another instance (x', v') and generate certificate cthat x' hides x. More on these later

Idea

Folding scheme hiding others' statements.

NP statement hider

Hide each instance (x, v) as another instance (x', v') and generate certificate cthat x' hides x. More on these later

(x_1, v_1) (x_2, v_2) (x_3, v_3) (x_4, v_4)

Idea

Folding scheme hiding others' statements.

NP statement hider

Hide each instance (x, v) as another instance (x', v') and generate certificate cthat x' hides x. More on these later

Example

•
$$\pi_1 = \{x'_1, c_1\}$$

•
$$\pi_2 = \{x'_2, c_2\}$$

•
$$\pi_3 = \{x'_3, c_3\}$$

•
$$\pi_4 = \{x'_4, c_4\}$$

Folding Schemes with Privacy Preserving Selective Verification

$$\begin{array}{c} (x'_1, v'_1, c_1) \ (x'_2, v'_2, c_2) \ (x'_3, v'_3, c_3) \ (x'_4, v'_4, c_4) \\ & \uparrow \\ & \downarrow \\ & \downarrow \\ (x_1, v_1) \ (x_2, v_2) \ (x_3, v_3) \ (x_4, v_4) \end{array}$$

Idea

Folding scheme hiding others' statements.

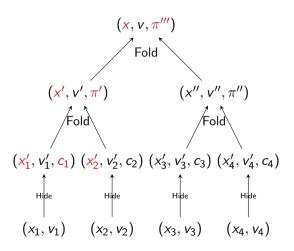
NP statement hider

Hide each instance (x, v) as another instance (x', v') and generate certificate cthat x' hides x. More on these later

Example

$$\pi_1 = \{x'_1, c_1, x'_2, x', \pi', x, \pi'''\}$$
$$\pi_2 = \{x'_2, c_2, x'_1, x', \pi', x, \pi'''\}$$
$$\pi_3 = \{x'_3, c_3, x'_4, x'', \pi'', x, \pi'''\}$$

•
$$\pi_4 = \{x'_4, c_4, x'_3, x'', \pi'', x, \pi'''\}$$



Security of Privacy Preserving FS

IND-CMA flavor:

Folding Schemes with Privacy Preserving Selective Verification Joan Boyar & Simon Erfurth

Security of Privacy Preserving FS

IND-CMA flavor:

Adv choose input with 2 options for entry *j*

$$\begin{array}{ccc} (x_1, v_1) & (x_2^0, v_2^0) & (x_3, v_3) & (x_4, v_4) \\ & & (x_2^1, v_2^1) \end{array}$$

Security of Privacy Preserving FS

IND-CMA flavor:

- Adv choose input with 2 options for entry *j*
- **2** Entry j chosen at random

$$\begin{array}{cccc} (x_1,v_1) & (x_2^0,v_2^0) & (x_3,v_3) & (x_4,v_4) \\ & & (x_2^1,v_2^1) \\ & & b \leftarrow_\$ \{0,1\} \end{array}$$

Folding Schemes with Privacy Preserving Selective Verification

Security of Privacy Preserving FS

IND-CMA flavor:

- Adv choose input with 2 options for entry *j*
- **2** Entry j chosen at random

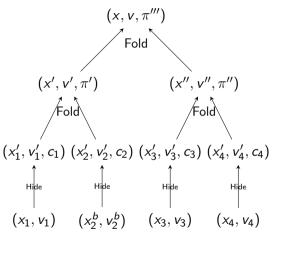
(x_1, v_1) (x_2^b, v_2^b) (x_3, v_3) (x_4, v_4)

Folding Schemes with Privacy Preserving Selective Verification

Security of Privacy Preserving FS

IND-CMA flavor:

- Adv choose input with 2 options for entry *j*
- 2 Entry *j* chosen at random
- **3** Everything is hidden and folded



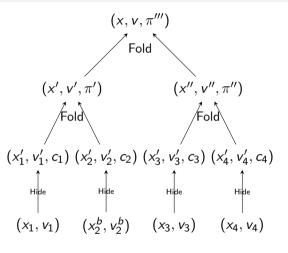
 $b \leftarrow_\$ \{0,1\}$

Security of Privacy Preserving FS

IND-CMA flavor:

- Adv choose input with 2 options for entry j
- 2 Entry *j* chosen at random
- **3** Everything is hidden and folded
- 4 Adv chooses index ℓ and receives π_ℓ

 $Adv \longleftarrow \pi_1$



Folding Schemes with Privacy Preserving Selective Verification

Security of Privacy Preserving FS

IND-CMA flavor:

- Adv choose input with 2 options for entry *j*
- 2 Entry *j* chosen at random
- **3** Everything is hidden and folded
- 4 Adv chooses index ℓ and receives π_ℓ
- **5** Guess which (x_j, v_j) was used

$$b' \longleftarrow \operatorname{Adv} \longleftarrow \pi_1$$

Win if b' = b



NP statement hider

$$(x, v) \longrightarrow$$
 Hide $\longrightarrow (x', v', c)$

Folding Schemes with Privacy Preserving Selective Verification Joan Boyar & Simon Erfurth

$$(x, v) \longrightarrow$$
 Hide $\longrightarrow (x', v', c)$

- Completeness
- Knowledge Soundness

$$(x, v) \longrightarrow$$
Hide $\longrightarrow (x', v', c)$

- Completeness
- Knowledge Soundness
- Hiding

$$(x, v) \longrightarrow$$
 Hide $\longrightarrow (x', v', c)$

- Completeness
- Knowledge Soundness
- Hiding
 - (x_0, v_0) (x_1, v_1)

$$(x, v) \longrightarrow$$
 Hide $\longrightarrow (x', v', c)$

- Completeness
- Knowledge Soundness
- Hiding

$$(x_0, v_0) \ (x_1, v_1) \ b \leftarrow_{\$} \{0, 1\}$$

NP statement hider

$$(x, v) \longrightarrow$$
 Hide $\longrightarrow (x', v', c)$

- Completeness
- Knowledge Soundness
- Hiding

$$(x, v) \longrightarrow$$
 Hide $\longrightarrow (x', v', c)$

- Completeness
- Knowledge Soundness
- Hiding

$$(x_b, v_b) \longrightarrow \text{Hide} \longrightarrow (x', v', c)$$

 $b \leftarrow_{\$} \{0, 1\}$

$$(x, v) \longrightarrow$$
 Hide $\longrightarrow (x', v', c)$

- Completeness
- Knowledge Soundness
- Hiding

$$(x_b, v_b) \longrightarrow \text{Hide} \longrightarrow (x', v', c)$$

 $b \leftarrow_{\$} \{0, 1\}$
 $(x', v') \rightarrow \text{Adv}$

$$(x, v) \longrightarrow$$
 Hide $\longrightarrow (x', v', c)$

- Completeness
- Knowledge Soundness
- Hiding

$$(x_b, v_b) \longrightarrow \text{Hide} \longrightarrow (x', v', c)$$
$$b \leftarrow_{\$} \{0, 1\}$$
$$(x', v') \rightarrow \text{Adv} \longrightarrow b'$$

NP statement hider

$$(x, v) \longrightarrow$$
 Hide $\longrightarrow (x', v', c)$

- Completeness
- Knowledge Soundness
- Hiding

$$(x_b, v_b) \longrightarrow \text{Hide} \longrightarrow (x', v', c)$$
$$b \leftarrow_{\$} \{0, 1\}$$
$$(x', v') \rightarrow \text{Adv} \longrightarrow b'$$

Claim

Composing a Folding Scheme with an NP statement hider gives a Folding Scheme with Privacy Preserving Selective Verification.

Folding with random instance

To hide (x, v):

1 Generate random instance (x_r, v_r) .

2 Fold:

$$(x',v',\pi) \leftarrow \mathsf{Fold}((x,v),(x_r,v_r))$$

3 Output $(x', v', c = (\pi, x_r))$.

Folding with random instance

To hide (x, v):

1 Generate random instance (x_r, v_r) .

2 Fold:

$$(x',v',\pi) \leftarrow \mathsf{Fold}((x,v),(x_r,v_r))$$

3 Output $(x', v', c = (\pi, x_r))$.

Recall

Example

$$\mathcal{L}_{A} = \{x \mid \exists v \colon Av = x\}$$

Fold($(x_1, v_1), (x_2, v_2)$): $\rho \leftarrow_{\$} \mathbb{F}; \pi = \rho;$ $x = x_1 + \rho x_2; \quad v = v_1 + \rho v_2.$

Folding with random instance

To hide (x, v):

1 Generate random instance (x_r, v_r) .

2 Fold:

$$(x',v',\pi) \leftarrow \mathsf{Fold}((x,v),(x_r,v_r))$$

3 Output $(x', v', c = (\pi, x_r))$.

Recall

Example

1 Generate random instance in
$$\mathcal{R}$$
 as $v_r \leftarrow_{\$} \mathbb{F}^m$; $x_r = Av$.

$$\mathcal{L}_{\mathcal{A}} = \{ x \mid \exists v \colon \mathcal{A}v = x \}$$

Fold($(x_1, v_1), (x_2, v_2)$): $\rho \leftarrow_{\$} \mathbb{F}; \pi = \rho;$ $x = x_1 + \rho x_2; \quad v = v_1 + \rho v_2.$

Folding with random instance

To hide (x, v):

1 Generate random instance (x_r, v_r) .

2 Fold:

$$(x',v',\pi) \leftarrow \mathsf{Fold}((x,v),(x_r,v_r))$$

3 Output
$$(x', v', c = (\pi, x_r))$$
.

Recall

$$\mathcal{L}_{A} = \{ x \mid \exists v \colon Av = x \}$$

Fold($(x_1, v_1), (x_2, v_2)$): $\rho \leftarrow_{\$} \mathbb{F}; \pi = \rho;$ $x = x_1 + \rho x_2; \quad v = v_1 + \rho v_2.$

Example

1 Generate random instance in \mathcal{R} as $v_r \leftarrow_{\$} \mathbb{F}^m$; $x_r = Av$.

2 Hide by folding Hide($(x, v), (x_r, v_r)$): $\rho \leftarrow_{\$} \mathbb{F}$ $x' = x_1 + \rho x_r$ $v' = v_1 + \rho v_r$.

Folding with random instance

To hide (x, v):

1 Generate random instance (x_r, v_r) .

2 Fold:

$$(x',v',\pi) \leftarrow \mathsf{Fold}((x,v),(x_r,v_r))$$

3 Output
$$(x', v', c = (\pi, x_r))$$
.

Recall

$$\mathcal{L}_{A} = \{x \mid \exists v \colon Av = x\}$$

Fold($(x_1, v_1), (x_2, v_2)$): $\rho \leftarrow_{\$} \mathbb{F}; \pi = \rho;$ $x = x_1 + \rho x_2; \quad v = v_1 + \rho v_2.$

Example

1 Generate random instance in \mathcal{R} as $v_r \leftarrow_{\$} \mathbb{F}^m$; $x_r = Av$.

2 Hide by folding Hide($(x, v), (x_r, v_r)$): $\rho \leftarrow_{\$} \mathbb{F}$ $x' = x_1 + \rho x_r$ $v' = v_1 + \rho v_r$. 3 Output $(x', v', c = (\rho, x_r))$.

Folding Schemes with Privacy Preserving Selective Verification

Example is secure

Can Adv distinguish if (x, v)hides (x_1, v_1) or (x_2, v_2) ?

Example is secure

Can Adv distinguish if (x, v)hides (x_1, v_1) or (x_2, v_2) ?

Assume (x, v) hides (x_1, v_1) using (x_r, v_r) :

$$\begin{aligned} x &= x_1 + \rho x_r \\ v &= v_1 + \rho v_r. \end{aligned}$$

Example is secure

Can Adv distinguish if (x, v)hides (x_1, v_1) or (x_2, v_2) ?

Assume (x, v) hides (x_1, v_1) using (x_r, v_r) :

$$\begin{aligned} x &= x_1 + \rho x_r \\ v &= v_1 + \rho v_r. \end{aligned}$$

(x, v) is equally likely to hide (x_2, v_2) if there is $(x'_r, v'_r) \in \mathcal{R}_A$ such that:

$$x_2 + \rho' x'_r = x_1 + \rho x_r$$

 $v_2 + \rho' v'_r = v_1 + \rho v_r.$

Example is secure

Can Adv distinguish if (x, v)hides (x_1, v_1) or (x_2, v_2) ?

Assume (x, v) hides (x_1, v_1) using (x_r, v_r) :

$$\begin{aligned} x &= x_1 + \rho x_r \\ v &= v_1 + \rho v_r. \end{aligned}$$

(x, v) is equally likely to hide (x_2, v_2) if there is $(x'_r, v'_r) \in \mathcal{R}_A$ such that:

$$x_{2} + \rho' x_{r}' = x_{1} + \rho x_{r}$$
$$v_{2} + \rho' v_{r}' = v_{1} + \rho v_{r}.$$

So we must have

$$\begin{aligned} x'_r &= (\rho')^{-1}(x_1 + \rho x_r - x_2) \\ v'_r &= (\rho')^{-1}(v_1 + \rho v_r - v_2) \end{aligned}$$

Example is secure

Can Adv distinguish if (x, v)hides (x_1, v_1) or (x_2, v_2) ?

Assume (x, v) hides (x_1, v_1) using (x_r, v_r) :

$$\begin{aligned} x &= x_1 + \rho x_r \\ v &= v_1 + \rho v_r. \end{aligned}$$

(x, v) is equally likely to hide (x_2, v_2) if there is $(x'_r, v'_r) \in \mathcal{R}_A$ such that:

$$x_{2} + \rho' x_{r}' = x_{1} + \rho x_{r}$$
$$v_{2} + \rho' v_{r}' = v_{1} + \rho v_{r}.$$

So we must have

$$x'_{r} = (\rho')^{-1}(x_{1} + \rho x_{r} - x_{2})$$
$$v'_{r} = (\rho')^{-1}(v_{1} + \rho v_{r} - v_{2})$$

But is this in \mathcal{R}_A ?

Example is secure

Can Adv distinguish if (x, v)hides (x_1, v_1) or (x_2, v_2) ?

Assume (x, v) hides (x_1, v_1) using (x_r, v_r) :

$$\begin{aligned} \mathbf{x} &= \mathbf{x}_1 + \rho \mathbf{x}_r \\ \mathbf{v} &= \mathbf{v}_1 + \rho \mathbf{v}_r. \end{aligned}$$

(x, v) is equally likely to hide (x_2, v_2) if there is $(x'_r, v'_r) \in \mathcal{R}_A$ such that:

$$x_{2} + \rho' x_{r}' = x_{1} + \rho x_{r}$$

$$v_{2} + \rho' v_{r}' = v_{1} + \rho v_{r}.$$

So we must have

$$\begin{aligned} x_r' &= (\rho')^{-1} (x_1 + \rho x_r - x_2) \\ v_r' &= (\rho')^{-1} (v_1 + \rho v_r - v_2) \end{aligned}$$

But is this in \mathcal{R}_A ?

$$\begin{aligned} Av'_r &= A(\rho')^{-1}(v_1 + \rho v_r - v_2) \\ &= (\rho')^{-1}(Av_1 + \rho Av_r - Av_2) \\ &= (\rho')^{-1}(x_1\rho x_r - x_2) \\ &= x'_r \end{aligned}$$

Example is secure

Can Adv distinguish if (x, v)hides (x_1, v_1) or (x_2, v_2) ?

Assume (x, v) hides (x_1, v_1) using (x_r, v_r) :

$$\begin{aligned} x &= x_1 + \rho x_r \\ v &= v_1 + \rho v_r. \end{aligned}$$

Theorem

There is a folding scheme with privacy preserving selective verification for $\mathcal{L}_A = \text{Im}(A)$.

(x, v) is equally likely to hide (x_2, v_2) if there is $(x'_r, v'_r) \in \mathcal{R}_A$ such that:

$$x_{2} + \rho' x_{r}' = x_{1} + \rho x_{r}$$
$$v_{2} + \rho' v_{r}' = v_{1} + \rho v_{r}.$$

So we must have

$$\begin{aligned} x_r' &= (\rho')^{-1} (x_1 + \rho x_r - x_2) \\ v_r' &= (\rho')^{-1} (v_1 + \rho v_r - v_2) \end{aligned}$$

But is this in \mathcal{R}_A ?

$$\begin{aligned} Av'_r &= A(\rho')^{-1}(v_1 + \rho v_r - v_2) \\ &= (\rho')^{-1}(Av_1 + \rho Av_r - Av_2) \\ &= (\rho')^{-1}(x_1\rho x_r - x_2) \\ &= x'_r \end{aligned}$$

Conclusion

NP statement hider

If there is a folding scheme for \mathcal{L} , \mathcal{R} supports efficient random sampling, and for any three instances $(x_1, v_1), (x_2, v_2), (x, v) \in \mathcal{R}$ there are equally many ways to fold (x_1, v_1) into (x, v) as there is to fold (x_2, v_2) into (x, v), then there is an NP statement hider for \mathcal{L} .

Conclusion

NP statement hider

If there is a folding scheme for \mathcal{L} , \mathcal{R} supports efficient random sampling, and for any three instances $(x_1, v_1), (x_2, v_2), (x, v) \in \mathcal{R}$ there are equally many ways to fold (x_1, v_1) into (x, v) as there is to fold (x_2, v_2) into (x, v), then there is an NP statement hider for \mathcal{L} .

Privacy Preserving Folding Scheme

As above: There is a Privacy Preserving Folding Scheme for \mathcal{L} .

Conclusion

NP statement hider

If there is a folding scheme for \mathcal{L} , \mathcal{R} supports efficient random sampling, and for any three instances $(x_1, v_1), (x_2, v_2), (x, v) \in \mathcal{R}$ there are equally many ways to fold (x_1, v_1) into (x, v) as there is to fold (x_2, v_2) into (x, v), then there is an NP statement hider for \mathcal{L} .

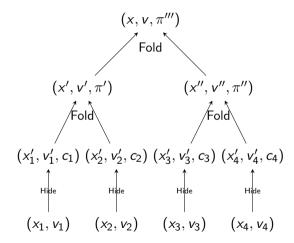
Privacy Preserving Folding Scheme

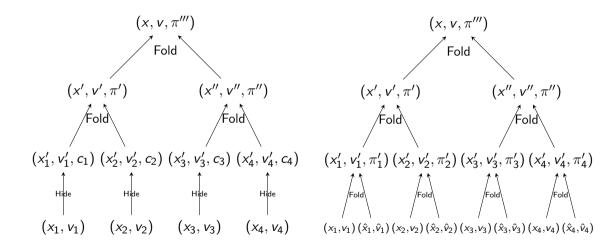
As above: There is a Privacy Preserving Folding Scheme for \mathcal{L} .

Languages

We show that this is satisfied by folding schemes schemes for

- Inner Product Relation of Committed Values [RZ23]
- Committed Relaxed R1CS [KST22]





Thank you for listening.

ePrint 2024/1530

[B**E**24]

Folding Schemes with Privacy Preserving Selective Verification Joan Boyar & Simon Erfurth

References

[BE24] Joan Boyar and Simon Erfurth. Folding Schemes with Privacy Preserving Selective Verification. Cryptology ePrint Archive, Paper 2024/1530. 2024. URL: https://eprint.iacr.org/2024/1530.

[KST22] Abhiram Kothapalli, Srinath T. V. Setty, and Ioanna Tzialla. "Nova: Recursive Zero-Knowledge Arguments from Folding Schemes". In: Advances in Cryptology - CRYPTO 2022. Vol. 13510. Lecture Notes in Computer Science. Springer, 2022, pp. 359–388. DOI: 10.1007/978-3-031-15985-5_13.

[RZ23] Carla Ràfols and Alexandros Zacharakis. "Folding Schemes with Selective Verification". In: Progress in Cryptology - LATINCRYPT 2023. Vol. 14168. Lecture Notes in Computer Science. Springer, 2023, pp. 229–248. DOI: 10.1007/978-3-031-44469-2_12.

Made using icons from flaticon.com.