Image Authenticity:

Slightly Homomorphic Digital Signatures and Privacy Preserving Folding Schemes

Simon Erfurth

Universitat Rovira i Virgili, 20/2 2025

₩ @serfurth.dk

Simon Erfurth

Motivation: Tracing the provenance of images.

STRENGTHENING AUTHENTICITY AND MITIGATING MISINFORMATION

Motivation: Tracing the provenance of images.

STRENGTHENING AUTHENTICITY AND MITIGATING MISINFORMATION

- Motivation: Tracing the provenance of images.
- A solution supporting JPEG compression.

STRENGTHENING AUTHENTICITY AND MITIGATING MISINFORMATION

SLIGHTLY HOMOMORPHIC DIGITAL SIGNATURES

- Motivation: Tracing the provenance of images.
- 2 A solution supporting JPEG compression.

STRENGTHENING AUTHENTICITY AND MITIGATING MISINFORMATION

SLIGHTLY HOMOMORPHIC DIGITAL SIGNATURES

- Motivation: Tracing the provenance of images.
- A solution supporting JPEG compression.
- 3 Towards a general solution from SNARKs.

STRENGTHENING AUTHENTICITY AND MITIGATING MISINFORMATION

SLIGHTLY HOMOMORPHIC DIGITAL SIGNATURES
AND PRIVACY PRESERVING FOLDING SCHEMES

- Motivation: Tracing the provenance of images.
 - A solution supporting JPEG compression.
- Towards a general solution from SNARKs.

Part 1

Motivation: Tracing the provenance of images

Strengthening Authenticity and Mitigating Misinformation



Trump urges his supporters to deliver victory in his return to scene of first assassination attempt

October 6, 2024

A straight forward solution?

Picture provider signs a signature for the image.

A straight forward solution?

Picture provider signs a signature for the image.

A straight forward solution?

Picture provider signs a signature for the image.

A straight forward solution?

Picture provider signs a signature for the image.

A straight forward solution?

Picture provider signs a signature for the image.

A straight forward solution?

Picture provider signs a signature for the image.

A straight forward solution?

Picture provider signs a signature for the image.

But...

Standard digital signatures do not work with (lossy) transformations.

A solution supporting JPEG compression

Slightly Homomorphic Digital Signatures

P-Homomorphic Signature Scheme

P-Homomorphic Signature Scheme

For message space \mathcal{M} , fix predicate $P \colon \mathcal{M} \times \mathcal{P}(\mathcal{M}) \to \{0,1\}$.

P-Homomorphic Signature Scheme

For message space \mathcal{M} , fix predicate $P \colon \mathcal{M} \times \mathcal{P}(\mathcal{M}) \to \{0,1\}$. (KeyGen, Sign, Verify) regular signature scheme

P-Homomorphic Signature Scheme

For message space \mathcal{M} , fix predicate $P \colon \mathcal{M} \times \mathcal{P}(\mathcal{M}) \to \{0,1\}$. (KeyGen, Sign, Verify) regular signature scheme with additional property that

- If $P(m, \{m_1, \ldots, m_i\}) = 1$:
- then *anyone* can extract a signature for m signed with sk from signatures for m_1, \ldots, m_i all signed with sk.

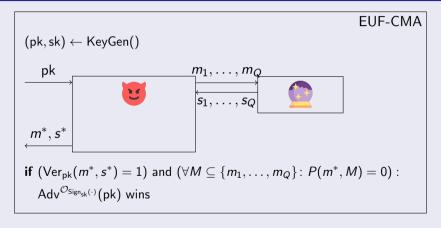
P-Homomorphic Signature Scheme

For message space \mathcal{M} , fix predicate $P \colon \mathcal{M} \times \mathcal{P}(\mathcal{M}) \to \{0,1\}$. (KeyGen, Sign, Verify) regular signature scheme with additional property that

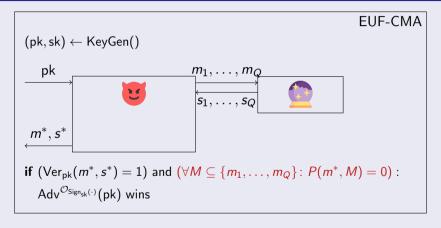
- If $P(m, \{m_1, \ldots, m_i\}) = 1$:
- then *anyone* can extract a signature for m signed with sk from signatures for m_1, \ldots, m_i all signed with sk.

For JPEG compression: Predicate P(m', M) returns 1 if and only if |M| = 1 and m' a compression of $m \in M$.

Unforgeability



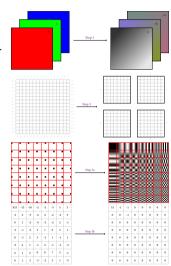
Unforgeability



Towards our construction: JPEG Compression

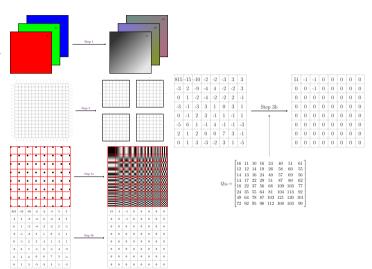
Towards our construction: JPEG Compression

- RGB to YCbCr color space
- 2 Optional: Down sample
- 3 Split into 8×8
 - Discrete cosine transformation
 - **b** Quantization
- 4 Encode using entropy encoder



Towards our construction: JPEG Compression

- RGB to YCbCr color space
- 2 Optional: Down sample
- 3 Split into 8×8
 - Discrete cosine transformation
 - **b** Quantization
- 4 Encode using entropy encoder



Simon Erfurth

Observation: Quantization with 2^n is truncation

$$\frac{b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0}{2^3}$$
 $\sim b_7 b_6 b_5 b_4 b_3 \times \times$

Observation: Quantization with 2^n is truncation

$$\frac{b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0}{2^3}$$

 \rightsquigarrow $b_7 b_6 b_5 b_4 b_3 xxx$

Idea: Provide something instead of *xxx*?

Observation: Quantization with 2^n is truncation

$$\frac{b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0}{2^3}$$
 $\sim b_7 b_6 b_5 b_4 b_3 x x x$

Idea: Provide something instead

$$b=$$
 b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_1

Observation: Quantization with 2^n is truncation

$$\frac{b_7\,b_6\,b_5\,b_4\,b_3\,b_2\,b_1\,b_0}{2^3}$$

 \rightsquigarrow $b_7 b_6 b_5 b_4 b_3 xxx$

Idea: Provide something instead of *xxx*?

Observation: Quantization with 2^n is truncation

$$\frac{b_7b_6b_5b_4b_3b_2b_1b_0}{2^3}$$

 \rightsquigarrow $b_7 b_6 b_5 b_4 b_3 xxx$

$$b=$$
 b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0

Observation: Quantization with 2^n is truncation

$$\frac{b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0}{2^3}$$

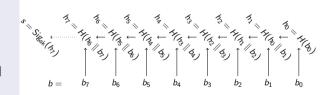
 \rightsquigarrow $b_7 b_6 b_5 b_4 b_3 xxx$



Observation: Quantization with 2^n is truncation

$$\frac{b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0}{2^3}$$

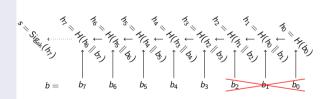
 \rightsquigarrow $b_7 b_6 b_5 b_4 b_3 xxx$



Observation: Quantization with 2^n is truncation

$$\frac{b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0}{2^3}$$

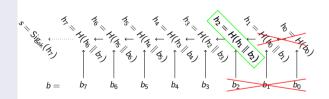
 \rightsquigarrow $b_7 b_6 b_5 b_4 b_3 xxx$



Observation: Quantization with 2^n is truncation

$$\frac{b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0}{2^3}$$

 $\sim b_7 b_6 b_5 b_4 b_3 xxx$

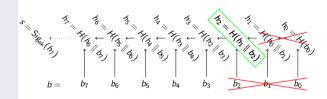


Observation: Quantization with 2^n is truncation

$$\frac{b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0}{2^3}$$

 \rightsquigarrow $b_7 b_6 b_5 b_4 b_3 xxx$

Idea: Provide something instead of xxx?



However...

... it is super inefficient!

But...

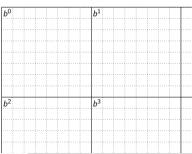
- $lue{}$...each of the 64 DCT coefficients are truncated the same in every 8×8 block
- and images generally have many pixels/blocks

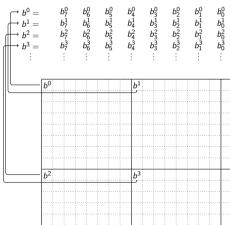
But...

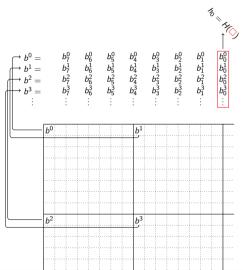
- \blacksquare ...each of the 64 DCT coefficients are truncated the same in every 8×8 block
- and images generally have many pixels/blocks

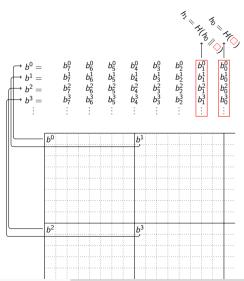
Our solution

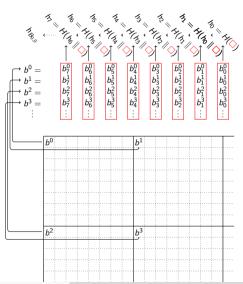
- Generate signature by "combining" matching DCT coefficients and then generate hash chains and hash ends together.
- Compress using quantization table with powers of two and update signature to include relevant nodes.

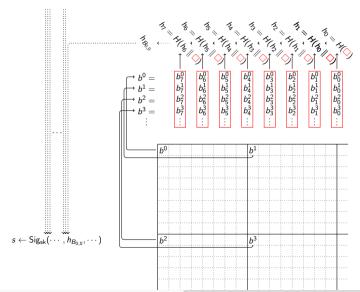


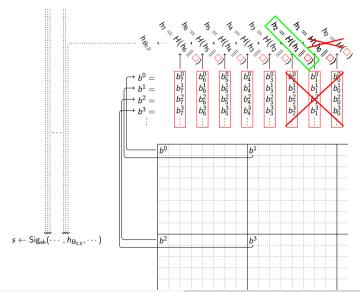












Digital signature scheme allowing JPEG compression

Simon Erfurth

Digital signature scheme allowing JPEG compression

Let H be a cryptographic hash function and DS = (KeyGen^{DS}, Sign^{DS}, Verify^{DS}) a standard digital signature scheme.

Digital signature scheme allowing JPEG compression,

Let H be a cryptographic hash function and $DS = (KeyGen^{DS}, Sign^{DS}, Verify^{DS})$ a standard digital signature scheme.

• sk, pk \leftarrow KeyGen(1 $^{\lambda}$): Identical to KeyGen^{DS}(1 $^{\lambda}$).

Digital signature scheme allowing JPEG compression

Let H be a cryptographic hash function and $DS = (KeyGen^{DS}, Sign^{DS}, Verify^{DS})$ a standard digital signature scheme.

- sk, pk \leftarrow KeyGen(1 $^{\lambda}$): Identical to KeyGen^{DS}(1 $^{\lambda}$).
- $s \leftarrow \operatorname{Sign}_{sk}(i)$: Compute the chains of hashes, sign the ends using Sign^{DS} .

Digital signature scheme allowing JPEG compression

Let H be a cryptographic hash function and DS = (KeyGen^{DS}, Sign^{DS}, Verify^{DS}) a standard digital signature scheme.

- sk, pk \leftarrow KeyGen(1 $^{\lambda}$): Identical to KeyGen^{DS}(1 $^{\lambda}$).
- $s \leftarrow \operatorname{Sign}_{sk}(i)$: Compute the chains of hashes, sign the ends using Sign^{DS} .
- $i', s' \leftarrow \mathsf{Compress}(i, s, P)$: Compress i using quantization tables P, compute chains of hashes and extract relevant ones. Add these to s.

Digital signature scheme allowing JPEG compression

Let H be a cryptographic hash function and $DS = (KeyGen^{DS}, Sign^{DS}, Verify^{DS})$ a standard digital signature scheme.

- sk, pk \leftarrow KeyGen(1 $^{\lambda}$): Identical to KeyGen^{DS}(1 $^{\lambda}$).
- $s \leftarrow \operatorname{Sign}_{sk}(i)$: Compute the chains of hashes, sign the ends using Sign^{DS} .
- i', $s' \leftarrow \text{Compress}(i, s, P)$: Compress i using quantization tables P, compute chains of hashes and extract relevant ones. Add these to s.
- $0/1 \leftarrow \text{Verify}_{pk}(i, s)$: Use i and hashes in s, if any, to find chain ends. Verify with Verify DS.

Unforgeability

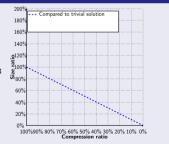
Constructed signature scheme allowing image compression is EUF-CMA.

Unforgeability

Constructed signature scheme allowing image compression is EUF-CMA.

Performance: Signature Size

Uncompressed image 2 MB --- |S| = 512 bits.



Unforgeability

Constructed signature scheme allowing image compression is EUF-CMA.

Performance: Signature Size

|S| = 36760 bits, |H| = 256 bits.

Unforgeability

Constructed signature scheme allowing image compression is EUF-CMA.

Performance: Signature Size

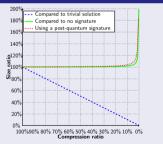
Uncompressed image 2 MB - - - |S| = 512 bits.

|S| = 512 bits,

|H| = 256 bits.

|S| = 36760 bits,

|S| = 36760 bits.|H| = 256 bits.



Visual Fidelity

Unforgeability

Constructed signature scheme allowing image compression is EUF-CMA.

Performance: Signature Size

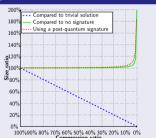
Uncompressed image 2 MB - - - |S| = 512 bits.

|S| = 512 bits.

|H| = 256 bits.

|S| = 36760 bits.

|H| = 256 bits.



Visual Fidelity

Uncompressed

Classic (QF50)

Powers of two

Unforgeability

Constructed signature scheme allowing image compression is EUF-CMA.

Performance: Signature Size

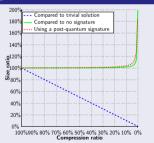
Uncompressed image 2 MB

- - - |S| = 512 bits.

- |S| = 512 bits,

|H| = 256 bits.

|S| = 36760 bits,|H| = 256 bits.



Visual Fidelity

					100	
Uncompressed		Classic (QF50)			Powers of two	
		Size	MS-SSIM	FSIMc	MSE	PSNR
QF25	Our tables	16.0 kB	0.960	0.978	77.526	29.749
	Unmodified	15.1 kB	0.959	0.978	78.900	29.655
		10.4 kB	0.914			
		20.5 kB	0.961			
QF50	Our tables	25.4 kB	0.979	0.991	45.831	32.008
	Unmodified	24.4 kB	0.979	0.991	45.910	31.988
		20.5 kB	0.961			
		36.5 kB	0.983			
QF80	Our tables	43.9 kB	0.990	0.997	20.256	35.402
	Unmodified	43.4 kB	0.991	0.997	20.432	35.364
		36.5 kB	0.983			
		60.4 kB	0.993			

Average over all images in [PLZ+09].

Towards a general solution from SNARKs

Privacy Preserving Folding Schemes



Image Provenance from SNARKs [NT16; DB23; DCB25; DEH25; MVVZ25]

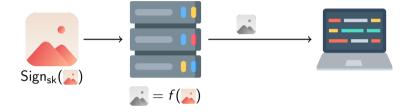


Image Provenance from SNARKs [NT16; DB23; DCB25; DEH25; MVVZ25]

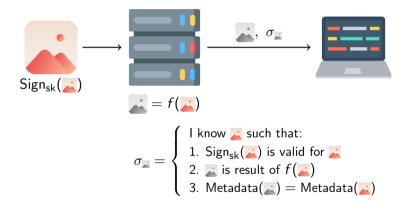


Image Provenance from SNARKs [NT16; DB23; DCB25; DEH25; MVVZ25]

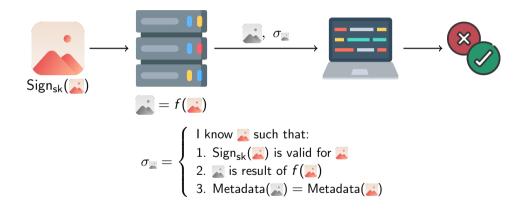
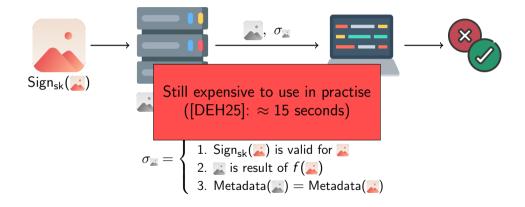
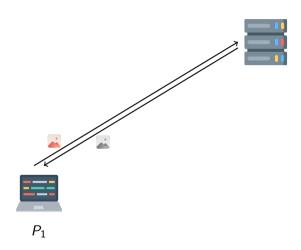


Image Provenance from SNARKs [NT16; DB23; DCB25; DEH25; MVVZ25]



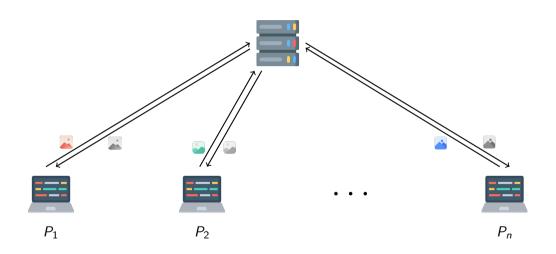
Restating the Problem:

Computation as a Service



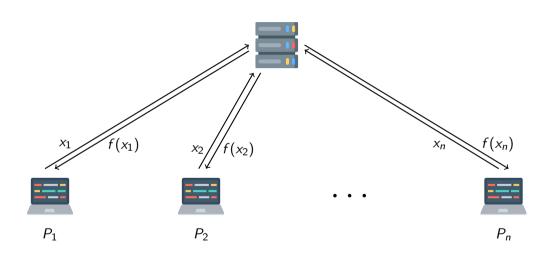
Restating the Problem:

Computation as a Service

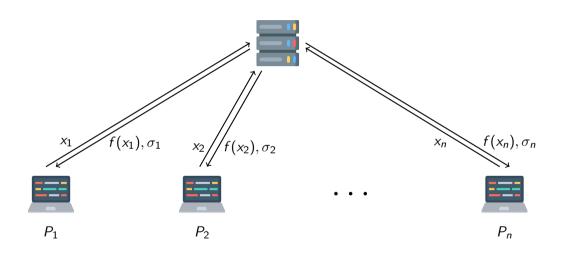


Restating the Problem:

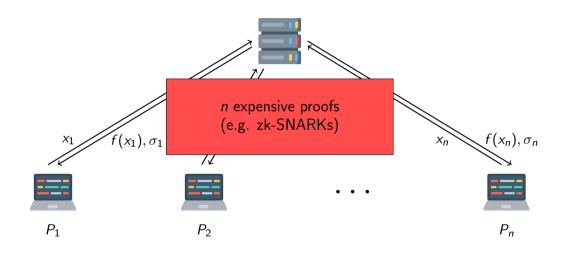
Computation as a Service



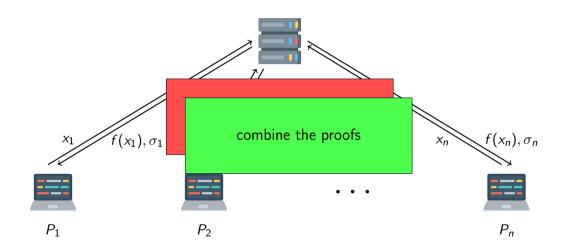
Restating the Problem: Verifiable Computation as a Service



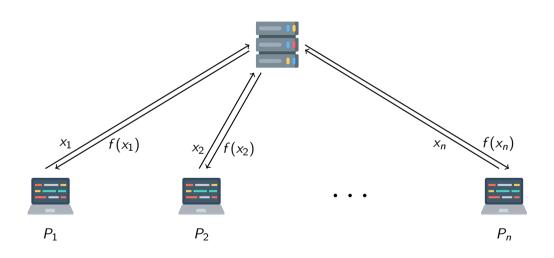
Restating the Problem: Verifiable Computation as a Service



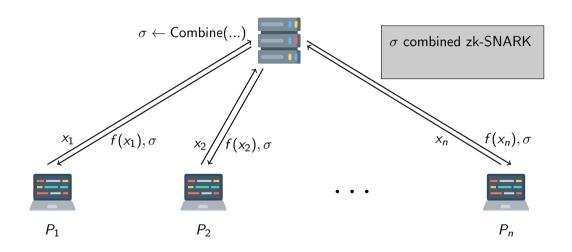
Restating the Problem: Verifiable Computation as a Service



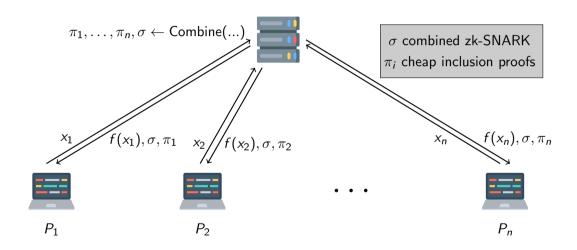
Motivating Example: Verifiable Computation as a Service



Motivating Example: Verifiable Computation as a Service



Motivating Example: Verifiable Computation as a Service



Folding Scheme

For NP-language \mathcal{L} with relation $\mathcal{R} = \{(x, v) \mid v \text{ is a proof that } x \in \mathcal{L}\},$ folding scheme FS which

Folding Scheme

For NP-language $\mathcal L$ with relation

$$\mathcal{R} = \{(x, v) \mid v \text{ is a proof that } x \in \mathcal{L}\},$$
 folding scheme FS which

Combines instances:

Fold:
$$((x_1, v_1), (x_2, v_2)) \rightarrow (x, v, \pi)$$

 $(x, v) \in \mathcal{R} \iff (x_1, v_1), (x_2, v_2) \in \mathcal{R}$

Folding Scheme

For NP-language \mathcal{L} with relation $\mathcal{R} = \{(x, v) \mid v \text{ is a proof that } x \in \mathcal{L}\},$ folding scheme FS which

- Combines instances:
 - Fold: $((x_1, v_1), (x_2, v_2)) \rightarrow (x, v, \pi)$ $(x, v) \in \mathcal{R} \iff (x_1, v_1), (x_2, v_2) \in \mathcal{R}$
- Check statement inclusion FoldVerify: $(x_1, x_2, x, \pi) \rightarrow 0/1$ 1 if π is proof that x_1 and x_2 were folded into x

Folding Scheme

For NP-language \mathcal{L} with relation $\mathcal{R} = \{(x, v) \mid v \text{ is a proof that } x \in \mathcal{L}\},$ folding scheme FS which

Combines instances: Fold: $((x_1, v_1), (x_2, v_2)) \rightarrow (x, v, \pi)$ $(x, v) \in \mathcal{R} \iff (x_1, v_1), (x_2, v_2) \in \mathcal{R}$

• Check statement inclusion FoldVerify: $(x_1, x_2, x, \pi) \rightarrow 0/1$ 1 if π is proof that x_1 and x_2 were folded into x

Example

For $A \in \mathbb{F}^{n \times m}$; $\mathcal{L}_A = \{x \mid \exists v \colon Av = x\}$.

Folding Scheme

For NP-language \mathcal{L} with relation $\mathcal{R} = \{(x, v) \mid v \text{ is a proof that } x \in \mathcal{L}\},$ folding scheme FS which

- Combines instances: Fold: $((x_1, v_1), (x_2, v_2)) \rightarrow (x, v, \pi)$ $(x, v) \in \mathcal{R} \iff (x_1, v_1), (x_2, v_2) \in \mathcal{R}$
- Check statement inclusion FoldVerify: $(x_1, x_2, x, \pi) \rightarrow 0/1$ 1 if π is proof that x_1 and x_2 were folded into x

Example

For $A \in \mathbb{F}^{n \times m}$; $\mathcal{L}_A = \{x \mid \exists v \colon Av = x\}$.

■ Fold(
$$(x_1, v_1), (x_2, v_2)$$
):
 $\rho \leftarrow_{\$} \mathbb{F}; \pi = \rho;$
 $x = x_1 + \rho x_2; \quad v = v_1 + \rho v_2.$

Folding Scheme

For NP-language \mathcal{L} with relation $\mathcal{R} = \{(x, v) \mid v \text{ is a proof that } x \in \mathcal{L}\},$ folding scheme FS which

- Combines instances: Fold: $((x_1, v_1), (x_2, v_2)) \rightarrow (x, v, \pi)$ $(x, v) \in \mathcal{R} \iff (x_1, v_1), (x_2, v_2) \in \mathcal{R}$
- Check statement inclusion FoldVerify: $(x_1, x_2, x, \pi) \rightarrow 0/1$ 1 if π is proof that x_1 and x_2 were folded into x

Example

For $A \in \mathbb{F}^{n \times m}$; $\mathcal{L}_A = \{x \mid \exists v \colon Av = x\}$.

- Fold($(x_1, v_1), (x_2, v_2)$): $\rho \leftarrow_{\$} \mathbb{F}; \pi = \rho;$ $x = x_1 + \rho x_2; \quad v = v_1 + \rho v_2.$
- FoldVerify (x_1, x_2, x, π) : check that $x = x_1 + \rho x_2$.

Folding Scheme: Security

Folding Scheme: Security

■ **Completeness**: No Adv. can output input to Fold in \mathcal{R} , which gives output not in \mathcal{R} (or invalid folding proof).

Folding Scheme: Security

- **Completeness**: No Adv. can output input to Fold in \mathcal{R} , which gives output not in \mathcal{R} (or invalid folding proof).
- Knowledge Soundness: From Adv. giving x_1, x_2, x, v, π where $(x, v) \in \mathcal{R}$ and π is accepted, we can extract witness for x_1, x_2 .

Folding Scheme: Security

- **Completeness**: No Adv. can output input to Fold in \mathcal{R} , which gives output not in \mathcal{R} (or invalid folding proof).
- Knowledge Soundness: From Adv. giving x_1, x_2, x, v, π where $(x, v) \in \mathcal{R}$ and π is accepted, we can extract witness for x_1, x_2 .

Example

Folding Scheme: Security

- **Completeness**: No Adv. can output input to Fold in \mathcal{R} , which gives output not in \mathcal{R} (or invalid folding proof).
- Knowledge Soundness: From Adv. giving x_1, x_2, x, v, π where $(x, v) \in \mathcal{R}$ and π is accepted, we can extract witness for x_1, x_2 .

Example

■ Completeness: $(x_1, v_1), (x_2, v_2) \in \mathcal{R}$ then

$$Av = A(v_1 + \rho v_2) = Av_1 + \rho Av_2$$

= $x_1 + \rho x_2 = x$

Folding Scheme: Security

- **Completeness**: No Adv. can output input to Fold in \mathcal{R} , which gives output not in \mathcal{R} (or invalid folding proof).
- Knowledge Soundness: From Adv. giving x_1, x_2, x, v, π where $(x, v) \in \mathcal{R}$ and π is accepted, we can extract witness for x_1, x_2 .

Example

■ Completeness: $(x_1, v_1), (x_2, v_2) \in \mathcal{R}$ then

$$Av = A(v_1 + \rho v_2) = Av_1 + \rho Av_2$$

= $x_1 + \rho x_2 = x$

■ Knowledge Soundness: Run to get $x, v, \pi = \rho$ and $x', v', \pi' = \rho'$ for same input.

$$v = v_1 + \rho v_2$$

$$v' = v_1 + \rho' v_2$$

$$\Rightarrow v_2 = (\rho' - \rho)^{-1} (v' - v)$$

From 2-folding to 4-folding

From 2-folding to 4-folding

Output of Fold is in $\mathcal{R}\Rightarrow \textbf{Bootstrapping}$

From 2-folding to 4-folding

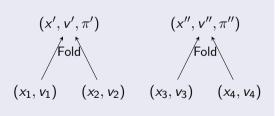
Output of Fold is in $\mathcal{R}\Rightarrow \textbf{Bootstrapping}$

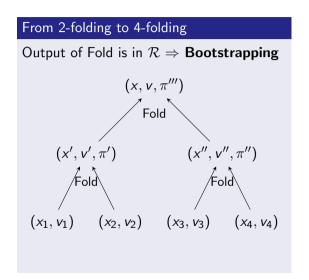
$$(x_1, v_1)$$
 (x_2, v_2) (x_3, v_3) (x_4, v_4)

From 2-folding to 4-folding Output of Fold is in $\mathcal{R} \Rightarrow$ **Bootstrapping** (x',v',π') (x_1, v_1) (x_2, v_2) (x_3, v_3) (x_4, v_4)

From 2-folding to 4-folding

Output of Fold is in $\mathcal{R}\Rightarrow \textbf{Bootstrapping}$

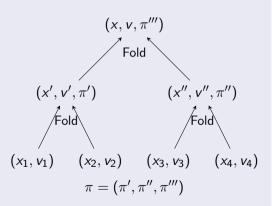




From 2-folding to 4-folding Output of Fold is in $\mathcal{R} \Rightarrow$ Bootstrapping (x, v, π''') (x'',v'',π'') (x', v', π') (x_1, v_1) (x_2, v_2) (x_3, v_3) (x_4, v_4) $\pi = (\pi', \pi'', \pi''')$

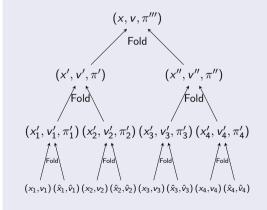
From 2-folding to 4-folding

Output of Fold is in $\mathcal{R} \Rightarrow \textbf{Bootstrapping}$



From 2-folding to *n*-folding

Binary tree with n leaves



But...

 $|\pi|$ and number of x_i 's needed scales linearly in n.

But...

 $|\pi|$ and number of x_i 's needed scales linearly in n.

Idea

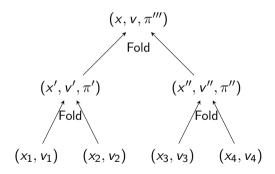
Generate n proofs π_i , each containing $O(\log n)$ folding proofs and statements.

But...

 $|\pi|$ and number of x_i 's needed scales linearly in n.

Idea

Generate n proofs π_i , each containing $O(\log n)$ folding proofs and statements.



But...

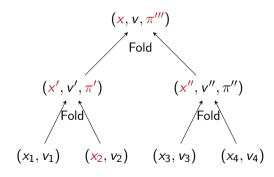
 $|\pi|$ and number of x_i 's needed scales linearly in n.

Idea

Generate n proofs π_i , each containing $O(\log n)$ folding proofs and statements.

Example

 $\pi_1 = \{x_2, x', \pi', x'', x, \pi'''\}$



But...

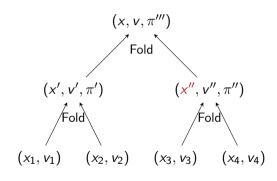
 $|\pi|$ and number of x_i 's needed scales linearly in n.

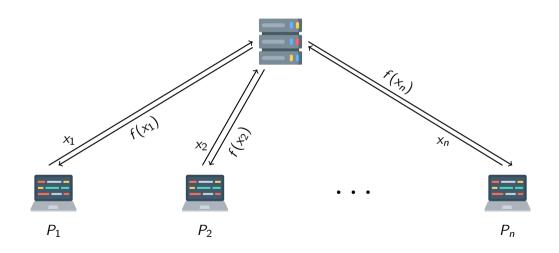
Idea

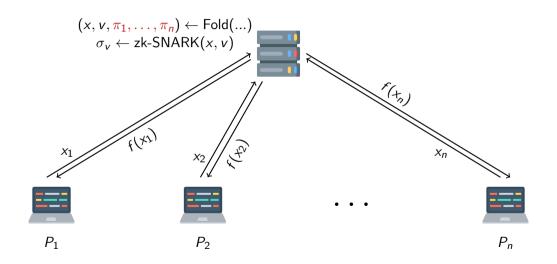
Generate n proofs π_i , each containing $O(\log n)$ folding proofs and statements.

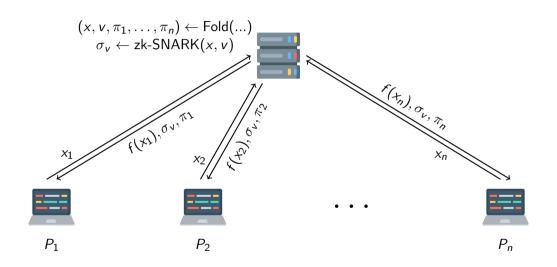
Example

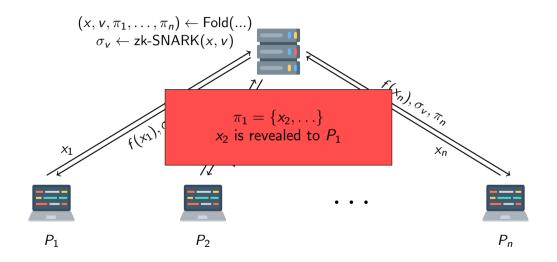
- $\pi_1 = \{x_2, x', \pi', x'', x, \pi'''\}$
- $\pi_2 = \{x_1, x', \pi', x'', x, \pi'''\}$
- $\pi_3 = \{x_4, x'', \pi'', x', x, \pi'''\}$
- $\pi_4 = \{x_3, x'', \pi'', x', x, \pi'''\}$











Idea

Folding scheme hiding others' statements.

Idea

Folding scheme hiding others' statements.

NP-statement hider

Hide each instance (x, v) as another instance (x', v') and generate certificate c that x' hides x. More on these later

Idea

Folding scheme hiding others' statements.

NP-statement hider

Hide each instance (x, v) as another instance (x', v') and generate certificate c that x' hides x. More on these later

$$(x_1, v_1)$$
 (x_2, v_2) (x_3, v_3) (x_4, v_4)

Idea

Folding scheme hiding others' statements.

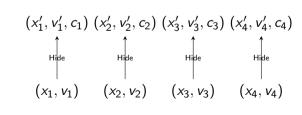
NP-statement hider

Hide each instance (x, v) as another instance (x', v') and generate certificate c that x' hides x. More on these later

Example

 $\blacksquare \pi_1 = \{x_1', c_1\}$

- $\pi_2 = \{x_2', c_2\}$
- $\pi_3 = \{x_3', c_3\}$
- $\pi_4 = \{x_4', c_4\}$



Idea

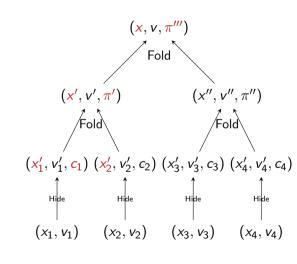
Folding scheme hiding others' statements.

NP-statement hider

Hide each instance (x, v) as another instance (x', v') and generate certificate c that x' hides x. More on these later

Example

- \blacksquare $\pi_1 = \{x'_1, c_1, x'_2, x', \pi', x, \pi'''\}$
- $\blacksquare \ \pi_2 = \{x_2', c_2, x_1', x', \pi', x, \pi'''\}$
- \blacksquare $\pi_3 = \{x_3', c_3, x_4', x'', \pi'', x, \pi'''\}$
- $\pi_4 = \{x_4', c_4, x_3', x'', \pi'', x, \pi'''\}$



Security of Privacy Preserving FS

IND-CMA flavor:

Security of Privacy Preserving FS

IND-CMA flavor:

1 Adv choose input with 2 options for entry *j*

$$(x_1, v_1)$$
 (x_2^0, v_2^0) (x_3, v_3) (x_4, v_4) (x_2^1, v_2^1)

Security of Privacy Preserving FS

IND-CMA flavor:

- 1 Adv choose input with 2 options for entry *j*
- 2 Entry j chosen at random

$$(x_1, v_1)$$
 (x_2^0, v_2^0) (x_3, v_3) (x_4, v_4) (x_2^1, v_2^1) $b \leftarrow_{\$} \{0, 1\}$

Security of Privacy Preserving FS

IND-CMA flavor:

- 1 Adv choose input with 2 options for entry *j*
- $\mathbf{2}$ Entry \mathbf{j} chosen at random

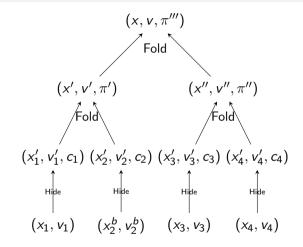
$$(x_1, v_1)$$
 (x_2^b, v_2^b) (x_3, v_3) (x_4, v_4)

 $b \leftarrow_{\$} \{0,1\}$

Security of Privacy Preserving FS

IND-CMA flavor:

- 1 Adv choose input with 2 options for entry *j*
- $\mathbf{2}$ Entry \mathbf{j} chosen at random
- 3 Everything is hidden and folded



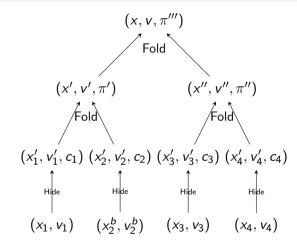
$$b \leftarrow_\$ \{0,1\}$$

Security of Privacy Preserving FS

IND-CMA flavor:

- 1 Adv choose input with 2 options for entry *j*
- $\mathbf{2}$ Entry \mathbf{j} chosen at random
- 3 Everything is hidden and folded
- 4 Adv chooses index ℓ and receives π_{ℓ}

 $Adv \leftarrow \pi_1$



$$b \leftarrow_{\$} \{0,1\}$$

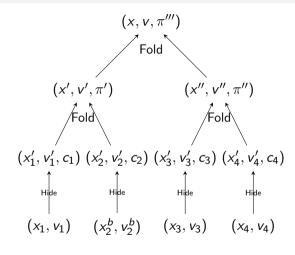
Security of Privacy Preserving FS

IND-CMA flavor:

- 1 Adv choose input with 2 options for entry *j*
- $\mathbf{2}$ Entry \mathbf{j} chosen at random
- 3 Everything is hidden and folded
- 4 Adv chooses index ℓ and receives π_{ℓ}
- **5** Guess which (x_i, v_i) was used

$$b' \longleftarrow Adv \longleftarrow \pi_1$$

Win if
$$b' = b$$



$$b \leftarrow_{\$} \{0,1\}$$

$$(x, v) \longrightarrow \mathsf{Hide} \longrightarrow (x', v', c)$$

$$(x, v) \longrightarrow Hide \longrightarrow (x', v', c)$$

- Completeness
- Knowledge Soundness

$$(x, v) \longrightarrow Hide \longrightarrow (x', v', c)$$

- Completeness
- Knowledge Soundness
- Hiding (IND-CMA)

$$(x, v) \longrightarrow Hide \longrightarrow (x', v', c)$$

- Completeness
- Knowledge Soundness
- Hiding (IND-CMA)

$$(x_0, v_0)$$

 (x_1, v_1)

$$(x, v) \longrightarrow Hide \longrightarrow (x', v', c)$$

- Completeness
- Knowledge Soundness
- Hiding (IND-CMA)

$$(x_0, v_0)$$

 (x_1, v_1)
 $b \leftarrow_{\$} \{0, 1\}$

$$(x, v) \longrightarrow Hide \longrightarrow (x', v', c)$$

- Completeness
- Knowledge Soundness
- Hiding (IND-CMA)

$$(x_b, v_b)$$

$$b \leftarrow_{\$} \{0, 1\}$$

$$(x, v) \longrightarrow Hide \longrightarrow (x', v', c)$$

- Completeness
- Knowledge Soundness
- Hiding (IND-CMA)

$$(x_b, v_b) \longrightarrow \text{Hide} \longrightarrow (x', v', c)$$

$$b \leftarrow_{\$} \{0,1\}$$

$$(x, v) \longrightarrow Hide \longrightarrow (x', v', c)$$

- Completeness
- Knowledge Soundness
- Hiding (IND-CMA)

$$(x_b, v_b) \longrightarrow \mathsf{Hide} \longrightarrow (x', v', c)$$

$$b \leftarrow_{\$} \{0, 1\}$$

$$(x', v') \longrightarrow \mathsf{Ady}$$

$$(x, v) \longrightarrow Hide \longrightarrow (x', v', c)$$

- Completeness
- Knowledge Soundness
- Hiding (IND-CMA)

$$(x_b, v_b) \longrightarrow \mathsf{Hide} \longrightarrow (x', v', c)$$

 $b \leftarrow_{\$} \{0, 1\}$
 $(x', v') \rightarrow \mathsf{Adv} \longrightarrow b'$

NP-statement hider

$$(x, v) \longrightarrow Hide \longrightarrow (x', v', c)$$

- Completeness
- Knowledge Soundness
- Hiding (IND-CMA)

$$(x_b, v_b) \longrightarrow \mathsf{Hide} \longrightarrow (x', v', c)$$

 $b \leftarrow_{\$} \{0, 1\}$
 $(x', v') \longrightarrow \mathsf{Adv} \longrightarrow b'$

Claim

Composing a Folding Scheme with an NP-statement hider gives a Privacy Preserving Folding Scheme.

Folding with random instance

To hide (x, v):

- **1** Generate random instance (x_r, v_r) .
- 2 Fold:

$$(x', v', \pi) \leftarrow \mathsf{Fold}((x, v), (x_r, v_r))$$

3 Output $(x', v', c = (\pi, x_r))$.

Folding with random instance

To hide (x, v):

- **1** Generate random instance (x_r, v_r) .
- 2 Fold:

$$(x', v', \pi) \leftarrow \mathsf{Fold}((x, v), (x_r, v_r))$$

3 Output $(x', v', c = (\pi, x_r))$.

Recall

$$\mathcal{L}_A = \{x \mid \exists v \colon Av = x\}$$

Fold(
$$(x_1, v_1), (x_2, v_2)$$
): $\rho \leftarrow_{\$} \mathbb{F}; \pi = \rho;$

$$x = x_1 + \rho x_2;$$
 $v = v_1 + \rho v_2.$

$$\mathbf{v} = \mathbf{v}_1 + \rho \mathbf{v}_2$$

Example

Folding with random instance

To hide (x, v):

- **1** Generate random instance (x_r, v_r) .
- 2 Fold:

$$(x',v',\pi) \leftarrow \mathsf{Fold}((x,v),(x_r,v_r))$$

3 Output $(x', v', c = (\pi, x_r))$.

Recall

$$\mathcal{L}_A = \{x \mid \exists v \colon Av = x\}$$

Fold(
$$(x_1, v_1), (x_2, v_2)$$
): $\rho \leftarrow_{\$} \mathbb{F}; \pi = \rho;$
 $x = x_1 + \rho x_2; \quad v = v_1 + \rho v_2.$

Example

 ${\rm 1\!\!1}$ Generate random instance in ${\cal R}$ as

$$v_r \leftarrow_{\$} \mathbb{F}^m; \qquad x_r = Av_r.$$

Folding with random instance

To hide (x, v):

- **1** Generate random instance (x_r, v_r) .
- 2 Fold:

$$(x', v', \pi) \leftarrow \mathsf{Fold}((x, v), (x_r, v_r))$$

3 Output $(x', v', c = (\pi, x_r))$.

Recall

$$\mathcal{L}_A = \{x \mid \exists v \colon Av = x\}$$

Fold(
$$(x_1, v_1), (x_2, v_2)$$
): $\rho \leftarrow_{\$} \mathbb{F}; \pi = \rho;$
 $x = x_1 + \rho x_2; \quad v = v_1 + \rho v_2.$

Example

1 Generate random instance in \mathcal{R} as

$$v_r \leftarrow_{\$} \mathbb{F}^m; \qquad x_r = Av_r.$$

2 Hide by folding $Hide((x, v), (x_r, v_r))$:

$$(x_r, v_r)$$
:
 $\rho \leftarrow_{\$} \mathbb{F}$
 $x' = x_1 + \rho x_r$
 $y' = v_1 + \rho v_r$.

Folding with random instance

To hide (x, v):

- **1** Generate random instance (x_r, v_r) .
- 2 Fold:

$$(x',v',\pi) \leftarrow \mathsf{Fold}((x,v),(x_r,v_r))$$

3 Output $(x', v', c = (\pi, x_r))$.

Recall

$$\mathcal{L}_A = \{x \mid \exists v \colon Av = x\}$$

Fold(
$$(x_1, v_1), (x_2, v_2)$$
): $\rho \leftarrow_{\$} \mathbb{F}; \pi = \rho;$
 $x = x_1 + \rho x_2; \quad v = v_1 + \rho v_2.$

Example

1 Generate random instance in $\mathcal R$ as

$$v_r \leftarrow_{\$} \mathbb{F}^m; \qquad x_r = Av_r.$$

2 Hide by folding $Hide((x, v), (x_r, v_r))$:

$$(v), (x_r, v_r)):$$
 $\rho \leftarrow_{\$} \mathbb{F}$
 $x' = x_1 + \rho x_r$
 $y' = v_1 + \rho v_r.$

3 Output $(x', v', c = (\rho, x_r))$.

Example is secure

Can Adv distinguish if (x, v) hides (x_1, v_1) or (x_2, v_2) ?

Example is secure

Can Adv distinguish if (x, v) hides (x_1, v_1) or (x_2, v_2) ?

Assume
$$(x, v)$$
 hides (x_1, v_1) using (x_r, v_r) :
$$x = x_1 + \rho x_r$$

$$v = v_1 + \rho v_r.$$

Example is secure

Can Adv distinguish if (x, v) hides (x_1, v_1) or (x_2, v_2) ?

Assume
$$(x, v)$$
 hides (x_1, v_1) using (x_r, v_r) :
 $x = x_1 + \rho x_r$

$$x = x_1 + \rho x_r$$
$$v = v_1 + \rho v_r.$$

(x, v) is equally likely to hide (x_2, v_2) if there is $(x'_r, v'_r) \in \mathcal{R}_A$ such that:

$$x_2 + \rho' x_r' = x_1 + \rho x_r$$

 $v_2 + \rho' v_r' = v_1 + \rho v_r$.

Simon Erfurth

Example is secure

Can Adv distinguish if (x, v) hides (x_1, v_1) or (x_2, v_2) ?

Assume
$$(x, v)$$
 hides (x_1, v_1) using (x_r, v_r) :
$$x = x_1 + \rho x_r$$

$$v = v_1 + \rho v_r$$
.

(x, v) is equally likely to hide (x_2, v_2) if there is $(x'_r, v'_r) \in \mathcal{R}_A$ such that:

$$x_2 + \rho' x'_r = x_1 + \rho x_r$$

 $v_2 + \rho' v'_r = v_1 + \rho v_r$.

So we must have

Simon Erfurth

$$x'_r = (\rho')^{-1}(x_1 + \rho x_r - x_2)$$

$$v'_r = (\rho')^{-1}(v_1 + \rho v_r - v_2)$$

Example is secure

Can Adv distinguish if (x, v) hides (x_1, v_1) or (x_2, v_2) ?

Assume
$$(x, v)$$
 hides (x_1, v_1) using (x_r, v_r) :
$$x = x_1 + \rho x_r$$

$$v = v_1 + \rho v_r$$
.

(x, v) is equally likely to hide (x_2, v_2) if there is $(x'_r, v'_r) \in \mathcal{R}_A$ such that:

$$x_2 + \rho' x'_r = x_1 + \rho x_r$$

 $v_2 + \rho' v'_r = v_1 + \rho v_r$.

So we must have

$$x'_r = (\rho')^{-1}(x_1 + \rho x_r - x_2)$$

$$v'_r = (\rho')^{-1}(v_1 + \rho v_r - v_2)$$

But is this in \mathcal{R}_A ?

NP-statement hider: Example

Example is secure

Can Adv distinguish if (x, v) hides (x_1, v_1) or (x_2, v_2) ?

Assume
$$(x, v)$$
 hides (x_1, v_1) using (x_r, v_r) :
$$x = x_1 + \rho x_r$$

$$v = v_1 + \rho v_r.$$

(x, v) is equally likely to hide (x_2, v_2) if there is $(x'_r, v'_r) \in \mathcal{R}_A$ such that:

$$x_2 + \rho' x'_r = x_1 + \rho x_r$$

 $v_2 + \rho' v'_r = v_1 + \rho v_r$.

So we must have

$$x'_r = (\rho')^{-1}(x_1 + \rho x_r - x_2)$$

$$v'_r = (\rho')^{-1}(v_1 + \rho v_r - v_2)$$

But is this in \mathcal{R}_A ?

$$Av'_{r} = A(\rho')^{-1}(v_{1} + \rho v_{r} - v_{2})$$

$$= (\rho')^{-1}(Av_{1} + \rho Av_{r} - Av_{2})$$

$$= (\rho')^{-1}(x_{1}\rho x_{r} - x_{2})$$

$$= x'_{r}$$

NP-statement hider: Example

Example is secure

Can Adv distinguish if (x, v) hides (x_1, v_1) or (x_2, v_2) ?

Assume
$$(x, v)$$
 hides (x_1, v_1) using (x_r, v_r) :
$$x = x_1 + \rho x_r$$

 $v = v_1 + \rho v_r$

Theorem

There is a privacy preserving folding scheme for $\mathcal{L}_A = \text{Im}(A)$.

(x, v) is equally likely to hide (x_2, v_2) if there is $(x'_r, v'_r) \in \mathcal{R}_A$ such that:

$$x_2 + \rho' x'_r = x_1 + \rho x_r$$

 $v_2 + \rho' v'_r = v_1 + \rho v_r$.

So we must have

$$x'_r = (\rho')^{-1}(x_1 + \rho x_r - x_2)$$

$$v'_r = (\rho')^{-1}(v_1 + \rho v_r - v_2)$$

But is this in \mathcal{R}_A ?

$$Av'_{r} = A(\rho')^{-1}(v_{1} + \rho v_{r} - v_{2})$$

$$= (\rho')^{-1}(Av_{1} + \rho Av_{r} - Av_{2})$$

$$= (\rho')^{-1}(x_{1}\rho x_{r} - x_{2})$$

$$= x'_{r}$$

In general...

NP-statement hider

If there is a folding scheme for \mathcal{L} , \mathcal{R} supports efficient random sampling, and for any three instances $(x_1, v_1), (x_2, v_2), (x, v) \in \mathcal{R}$ there are equally many ways to fold (x_1, v_1) into (x, v) as there is to fold (x_2, v_2) into (x, v), then there is an NP-statement hider for \mathcal{L} .

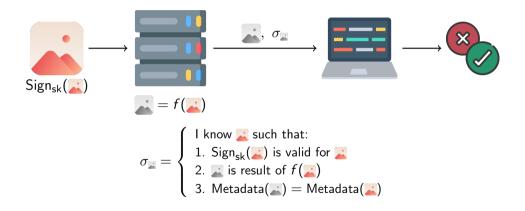
In general...

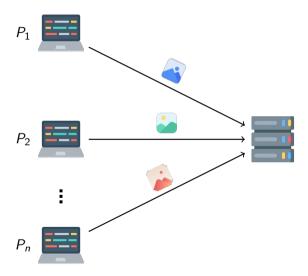
NP-statement hider

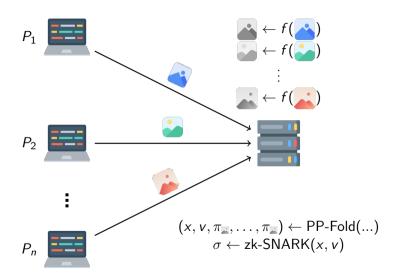
If there is a folding scheme for \mathcal{L} , \mathcal{R} supports efficient random sampling, and for any three instances $(x_1, v_1), (x_2, v_2), (x, v) \in \mathcal{R}$ there are equally many ways to fold (x_1, v_1) into (x, v) as there is to fold (x_2, v_2) into (x, v), then there is an NP-statement hider for \mathcal{L} .

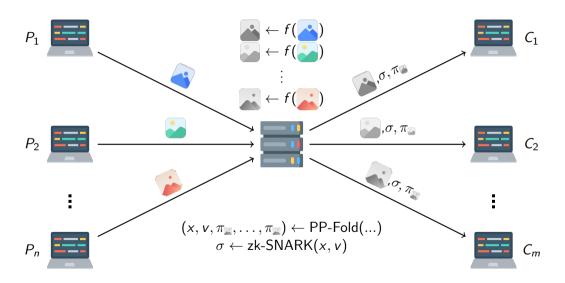
Privacy Preserving Folding Scheme

As above: There is a Privacy Preserving Folding Scheme for \mathcal{L} .









Thank you for listening.

Questions?

References I

- [BE24] Joan Boyar and Simon Erfurth. "Folding Schemes with Privacy Preserving Selective Verification". In: *IACR Communications in Cryptology* 1.4 (2024). DOI: 10.62056/a0iv4fe-3.
- [DB23] Trisha Datta and Dan Boneh. Using ZK Proofs to Fight Disinformation. https://medium.com/@boneh/using-zk-proofs-to-fight-disinformation-17e7d57fe52f. 2023. (Visited on 11/28/2023).
- [DCB25] Trisha Datta, Binyi Chen, and Dan Boneh. "VerITAS: Verifying Image Transformations at Scale". In: IEEE Symposium on Security and Privacy -S&P 2025. IEEE Computer Society, 2025. DOI: 10.1109/SP61157.2025.00097.

References II

- [DEH25] Stefan Dziembowski, Shahriar Ebrahimi, and Parisa Hassanizadeh. "VIMz: Verifiable Image Manipulation using Folding-based zkSNARKs". In: *Proc. Priv. Enhancing Technol.* 2025.2 (2025). URL: https://eprint.iacr.org/2024/1063.
- [JWL11] Rob Johnson, Leif Walsh, and Michael Lamb. "Homomorphic Signatures for Digital Photographs". In: *Financial Cryptography and Data Security FC 2011*. Vol. 7035. Lecture Notes in Computer Science. Springer, 2011, pp. 141–157. DOI: 10.1007/978-3-642-27576-0_12.
- [KST22] Abhiram Kothapalli, Srinath T. V. Setty, and Ioanna Tzialla. "Nova: Recursive Zero-Knowledge Arguments from Folding Schemes". In: Advances in Cryptology CRYPTO 2022. Vol. 13510. Lecture Notes in Computer Science. Springer, 2022, pp. 359–388. DOI: 10.1007/978-3-031-15985-5_13.

References III

- [MVVZ25] Pierpaolo Della Monica, Ivan Visconti, Andrea Vitaletti, and Marco Zecchini. "Trust Nobody: Privacy-Preserving Proofs for Edited Photos with Your Laptop". In: *IEEE Symposium on Security and Privacy S&P 2025*. IEEE Computer Society, 2025. DOI: 10.1109/SP61157.2025.00014.
- [NT16] Assa Naveh and Eran Tromer. "PhotoProof: Cryptographic Image Authentication for Any Set of Permissible Transformations". In: *IEEE Symposium on Security and Privacy S&P 2016*. IEEE Computer Society, 2016, pp. 255–271. DOI: 10.1109/SP.2016.23.

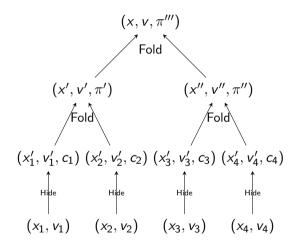
References IV

```
[PLZ+09] Nikolay Ponomarenko, Vladimir Lukin, Alexander Zelensky, Karen Egiazarian, Marco Carli, and Federica Battisti. "TID2008 — A Database for Evaluation of Full-Reference Visual Quality Assessment Metrics". In: Advances of Modern Radioelectronics 10.4 (2009), pp. 30–45. URL: https://www.ponomarenko.info/papers/mre2009tid.pdf.
```

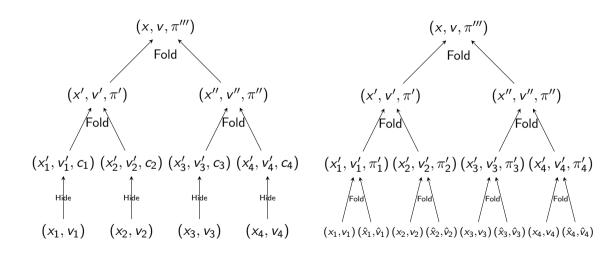
[RZ23] Carla Ràfols and Alexandros Zacharakis. "Folding Schemes with Selective Verification". In: Progress in Cryptology - LATINCRYPT 2023.
 Vol. 14168. Lecture Notes in Computer Science. Springer, 2023, pp. 229–248. DOI: 10.1007/978-3-031-44469-2_12.

Made using icons from flaticon.com.

Privacy Preserving Folding Scheme [BE24]



Privacy Preserving Folding Scheme [BE24]



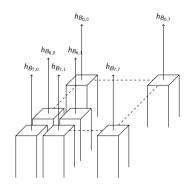
Computation Time Signature Size

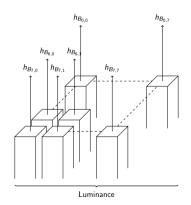
	Computation Time	Signature Size
Key generation	Same as KeyGen ^{DS}	

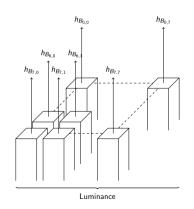
	Computation Time	Signature Size
Key generation	Same as KeyGen ^{DS}	_
Signing	1025 hashes and time of Sign ^{DS}	5

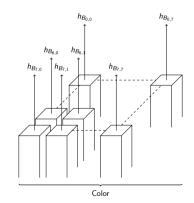
	Computation Time	Signature Size
Key generation	Same as KeyGen ^{DS}	_
Signing	1025 hashes and time of Sign ^{DS}	5
Compression	1025 hashes	128 H + S

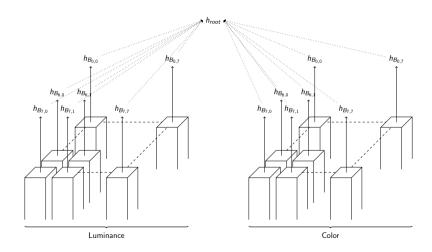
	Computation Time	Signature Size
Key generation	Same as KeyGen ^{DS}	_
Signing	1025 hashes and time of Sign ^{DS}	5
Compression	1025 hashes	128 H + S
Verification	1025 hashes and time of Verify ^{DS}	_

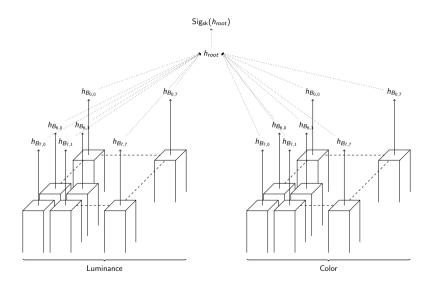




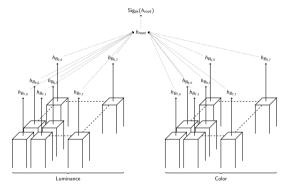


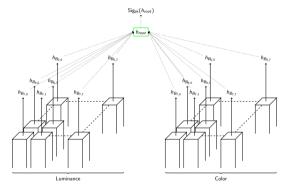


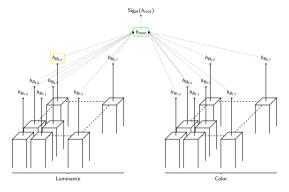




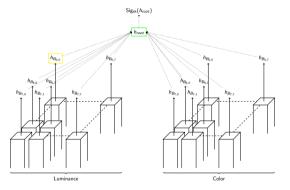
If $\forall k$: i^* 's h_{root} is different from i_k 's h_{root} : Forgery against DS.







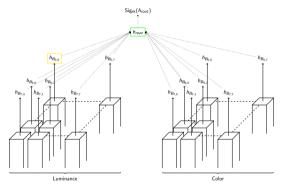
Else let k be such that i^* and i_k have the same h_{root} .



If $h_{B_{0,0}}$ is different for i^* and i^k : Collision for H:

$$H(\cdots,h_{B_{0,0}}^*,\cdots)=h_{root}=H(\cdots,h_{B_{0,0}}^k,\cdots).$$

Else let k be such that i^* and i_k have the same h_{root} .

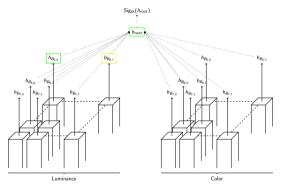


If $h_{B_{0,0}}$ is different for i^* and i^k : Collision for H:

$$H(\cdots, h_{B_{0,0}}^*, \cdots) = h_{root} = H(\cdots, h_{B_{0,0}}^k, \cdots).$$

Else move on.

Else let k be such that i^* and i_k have the same h_{root} .



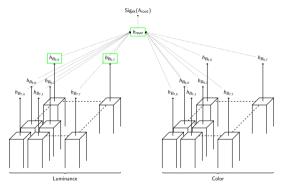
If h_{B_0} is different for i^* and i^k : Collision for H:

$$H(\cdots, h_{B_{0,0}}^*, \cdots) = h_{root} = H(\cdots, h_{B_{0,0}}^k, \cdots).$$

Else move on.

31 / 31

Else let k be such that i^* and i_k have the same h_{root} .

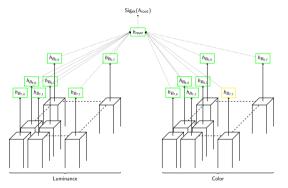


If $h_{B_{0,0}}$ is different for i^* and i^k : Collision for H:

$$H(\cdots,h_{B_{0,0}}^*,\cdots)=h_{root}=H(\cdots,h_{B_{0,0}}^k,\cdots).$$

Else move on.

Else let k be such that i^* and i_k have the same h_{root} .



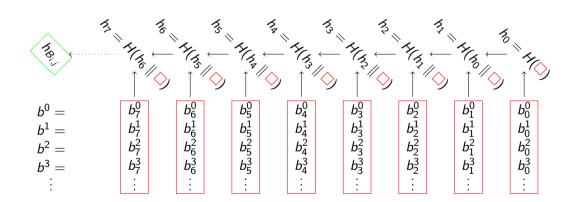
If h_{B_0} is different for i^* and i^k : Collision for H:

$$H(\cdots, h_{B_{0,0}}^*, \cdots) = h_{root} = H(\cdots, h_{B_{0,0}}^k, \cdots).$$

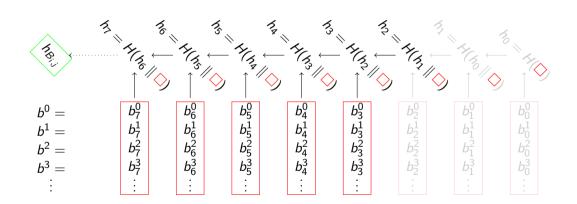
Else move on.

Either we have found $h_{B_{i,j}}^* \neq h_{B_{i,j}}^k$ and a collision to H.

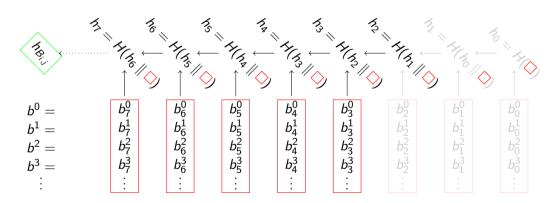
Or we go one level deeper for each $h_{B_{i,i}}$.



Or we go one level deeper for each $h_{B_{i,j}}$.

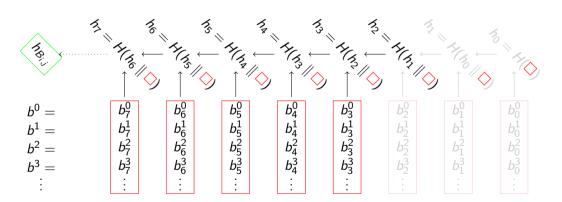


Or we go one level deeper for each $h_{B_{i,j}}$.



Since $i^* \notin \mathsf{CSpan}(i_k, s_k)$ we are guaranteed tho eventually find a difference

Or we go one level deeper for each $h_{B_{i,j}}$.



Since $i^* \notin \mathsf{CSpan}(i_k, s_k)$ we are guaranteed tho eventually find a difference, and hence a collision for H.