Image Authenticity: # Slightly Homomorphic Digital Signatures and Privacy Preserving Folding Schemes Simon Erfurth Universitat Rovira i Virgili, 20/2 2025 ₩ @serfurth.dk Simon Erfurth Motivation: Tracing the provenance of images. ### STRENGTHENING AUTHENTICITY AND MITIGATING MISINFORMATION Motivation: Tracing the provenance of images. ### STRENGTHENING AUTHENTICITY AND MITIGATING MISINFORMATION - Motivation: Tracing the provenance of images. - A solution supporting JPEG compression. #### STRENGTHENING AUTHENTICITY AND MITIGATING MISINFORMATION SLIGHTLY HOMOMORPHIC DIGITAL SIGNATURES - Motivation: Tracing the provenance of images. - 2 A solution supporting JPEG compression. #### STRENGTHENING AUTHENTICITY AND MITIGATING MISINFORMATION SLIGHTLY HOMOMORPHIC DIGITAL SIGNATURES - Motivation: Tracing the provenance of images. - A solution supporting JPEG compression. - 3 Towards a general solution from SNARKs. #### STRENGTHENING AUTHENTICITY AND MITIGATING MISINFORMATION SLIGHTLY HOMOMORPHIC DIGITAL SIGNATURES AND PRIVACY PRESERVING FOLDING SCHEMES - Motivation: Tracing the provenance of images. - A solution supporting JPEG compression. - Towards a general solution from SNARKs. #### Part 1 ## Motivation: Tracing the provenance of images Strengthening Authenticity and Mitigating Misinformation ## Trump urges his supporters to deliver victory in his return to scene of first assassination attempt October 6, 2024 #### A straight forward solution? Picture provider signs a signature for the image. #### A straight forward solution? Picture provider signs a signature for the image. #### A straight forward solution? Picture provider signs a signature for the image. #### A straight forward solution? Picture provider signs a signature for the image. #### A straight forward solution? Picture provider signs a signature for the image. #### A straight forward solution? Picture provider signs a signature for the image. #### A straight forward solution? Picture provider signs a signature for the image. #### But... Standard digital signatures do not work with (lossy) transformations. ## A solution supporting JPEG compression Slightly Homomorphic Digital Signatures P-Homomorphic Signature Scheme #### P-Homomorphic Signature Scheme For message space \mathcal{M} , fix predicate $P \colon \mathcal{M} \times \mathcal{P}(\mathcal{M}) \to \{0,1\}$. #### P-Homomorphic Signature Scheme For message space \mathcal{M} , fix predicate $P \colon \mathcal{M} \times \mathcal{P}(\mathcal{M}) \to \{0,1\}$. (KeyGen, Sign, Verify) regular signature scheme #### P-Homomorphic Signature Scheme For message space \mathcal{M} , fix predicate $P \colon \mathcal{M} \times \mathcal{P}(\mathcal{M}) \to \{0,1\}$. (KeyGen, Sign, Verify) regular signature scheme with additional property that - If $P(m, \{m_1, \ldots, m_i\}) = 1$: - then *anyone* can extract a signature for m signed with sk from signatures for m_1, \ldots, m_i all signed with sk. #### P-Homomorphic Signature Scheme For message space \mathcal{M} , fix predicate $P \colon \mathcal{M} \times \mathcal{P}(\mathcal{M}) \to \{0,1\}$. (KeyGen, Sign, Verify) regular signature scheme with additional property that - If $P(m, \{m_1, \ldots, m_i\}) = 1$: - then *anyone* can extract a signature for m signed with sk from signatures for m_1, \ldots, m_i all signed with sk. For JPEG compression: Predicate P(m', M) returns 1 if and only if |M| = 1 and m' a compression of $m \in M$. #### Unforgeability #### Unforgeability Towards our construction: JPEG Compression ### Towards our construction: JPEG Compression - RGB to YCbCr color space - 2 Optional: Down sample - 3 Split into 8×8 - Discrete cosine transformation - **b** Quantization - 4 Encode using entropy encoder ### Towards our construction: JPEG Compression - RGB to YCbCr color space - 2 Optional: Down sample - 3 Split into 8×8 - Discrete cosine transformation - **b** Quantization - 4 Encode using entropy encoder Simon Erfurth Observation: Quantization with 2^n is truncation $$\frac{b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0}{2^3}$$ $\sim b_7 b_6 b_5 b_4 b_3 \times \times$ ## Observation: Quantization with 2^n is truncation $$\frac{b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0}{2^3}$$ \rightsquigarrow $b_7 b_6 b_5 b_4 b_3 xxx$ **Idea:** Provide something instead of *xxx*? #### Observation: Quantization with 2^n is truncation $$\frac{b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0}{2^3}$$ $\sim b_7 b_6 b_5 b_4 b_3 x x x$ Idea: Provide something instead $$b=$$ b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_1 ## Observation: Quantization with 2^n is truncation $$\frac{b_7\,b_6\,b_5\,b_4\,b_3\,b_2\,b_1\,b_0}{2^3}$$ \rightsquigarrow $b_7 b_6 b_5 b_4 b_3 xxx$ **Idea:** Provide something instead of *xxx*? ## Observation: Quantization with 2^n is truncation $$\frac{b_7b_6b_5b_4b_3b_2b_1b_0}{2^3}$$ \rightsquigarrow $b_7 b_6 b_5 b_4 b_3 xxx$ $$b=$$ b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0 ## Observation: Quantization with 2^n is truncation $$\frac{b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0}{2^3}$$ \rightsquigarrow $b_7 b_6 b_5 b_4 b_3 xxx$ ## Observation: Quantization with 2^n is truncation $$\frac{b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0}{2^3}$$ \rightsquigarrow $b_7 b_6 b_5 b_4 b_3 xxx$ # Observation: Quantization with 2^n is truncation $$\frac{b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0}{2^3}$$ \rightsquigarrow $b_7 b_6 b_5 b_4 b_3 xxx$ ## Observation: Quantization with 2^n is truncation $$\frac{b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0}{2^3}$$ $\sim b_7 b_6 b_5 b_4 b_3 xxx$ # Observation: Quantization with 2^n is truncation $$\frac{b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0}{2^3}$$ \rightsquigarrow $b_7 b_6 b_5 b_4 b_3 xxx$ **Idea:** Provide something instead of xxx? #### However... ... it is super inefficient! #### But... - $lue{}$...each of the 64 DCT coefficients are truncated the same in every 8×8 block - and images generally have many pixels/blocks #### But... - \blacksquare ...each of the 64 DCT coefficients are truncated the same in every 8×8 block - and images generally have many pixels/blocks #### Our solution - Generate signature by "combining" matching DCT coefficients and then generate hash chains and hash ends together. - Compress using quantization table with powers of two and update signature to include relevant nodes. Digital signature scheme allowing JPEG compression Simon Erfurth #### Digital signature scheme allowing JPEG compression Let H be a cryptographic hash function and DS = (KeyGen^{DS}, Sign^{DS}, Verify^{DS}) a standard digital signature scheme. #### Digital signature scheme allowing JPEG compression, Let H be a cryptographic hash function and $DS = (KeyGen^{DS}, Sign^{DS}, Verify^{DS})$ a standard digital signature scheme. • sk, pk \leftarrow KeyGen(1 $^{\lambda}$): Identical to KeyGen^{DS}(1 $^{\lambda}$). #### Digital signature scheme allowing JPEG compression Let H be a cryptographic hash function and $DS = (KeyGen^{DS}, Sign^{DS}, Verify^{DS})$ a standard digital signature scheme. - sk, pk \leftarrow KeyGen(1 $^{\lambda}$): Identical to KeyGen^{DS}(1 $^{\lambda}$). - $s \leftarrow \operatorname{Sign}_{sk}(i)$: Compute the chains of hashes, sign the ends using Sign^{DS} . #### Digital signature scheme allowing JPEG compression Let H be a cryptographic hash function and DS = (KeyGen^{DS}, Sign^{DS}, Verify^{DS}) a standard digital signature scheme. - sk, pk \leftarrow KeyGen(1 $^{\lambda}$): Identical to KeyGen^{DS}(1 $^{\lambda}$). - $s \leftarrow \operatorname{Sign}_{sk}(i)$: Compute the chains of hashes, sign the ends using Sign^{DS} . - $i', s' \leftarrow \mathsf{Compress}(i, s, P)$: Compress i using quantization tables P, compute chains of hashes and extract relevant ones. Add these to s. #### Digital signature scheme allowing JPEG compression Let H be a cryptographic hash function and $DS = (KeyGen^{DS}, Sign^{DS}, Verify^{DS})$ a standard digital signature scheme. - sk, pk \leftarrow KeyGen(1 $^{\lambda}$): Identical to KeyGen^{DS}(1 $^{\lambda}$). - $s \leftarrow \operatorname{Sign}_{sk}(i)$: Compute the chains of hashes, sign the ends using Sign^{DS} . - i', $s' \leftarrow \text{Compress}(i, s, P)$: Compress i using quantization tables P, compute chains of hashes and extract relevant ones. Add these to s. - $0/1 \leftarrow \text{Verify}_{pk}(i, s)$: Use i and hashes in s, if any, to find chain ends. Verify with Verify DS. #### Unforgeability Constructed signature scheme allowing image compression is EUF-CMA. #### Unforgeability Constructed signature scheme allowing image compression is EUF-CMA. #### Performance: Signature Size Uncompressed image 2 MB --- |S| = 512 bits. #### Unforgeability Constructed signature scheme allowing image compression is EUF-CMA. #### Performance: Signature Size |S| = 36760 bits, |H| = 256 bits. #### Unforgeability Constructed signature scheme allowing image compression is EUF-CMA. #### Performance: Signature Size Uncompressed image 2 MB - - - |S| = 512 bits. |S| = 512 bits, |H| = 256 bits. |S| = 36760 bits, |S| = 36760 bits.|H| = 256 bits. #### Visual Fidelity #### Unforgeability Constructed signature scheme allowing image compression is EUF-CMA. #### Performance: Signature Size Uncompressed image 2 MB - - - |S| = 512 bits. |S| = 512 bits. |H| = 256 bits. |S| = 36760 bits. |H| = 256 bits. #### Visual Fidelity Uncompressed Classic (QF50) Powers of two #### Unforgeability Constructed signature scheme allowing image compression is EUF-CMA. #### Performance: Signature Size Uncompressed image 2 MB - - - |S| = 512 bits. - |S| = 512 bits, |H| = 256 bits. |S| = 36760 bits,|H| = 256 bits. #### Visual Fidelity | | | | | | 100 | | |--------------|------------|----------------|---------|-------|---------------|--------| | Uncompressed | | Classic (QF50) | | | Powers of two | | | | | Size | MS-SSIM | FSIMc | MSE | PSNR | | QF25 | Our tables | 16.0 kB | 0.960 | 0.978 | 77.526 | 29.749 | | | Unmodified | 15.1 kB | 0.959 | 0.978 | 78.900 | 29.655 | | | | 10.4 kB | 0.914 | | | | | | | 20.5 kB | 0.961 | | | | | QF50 | Our tables | 25.4 kB | 0.979 | 0.991 | 45.831 | 32.008 | | | Unmodified | 24.4 kB | 0.979 | 0.991 | 45.910 | 31.988 | | | | 20.5 kB | 0.961 | | | | | | | 36.5 kB | 0.983 | | | | | QF80 | Our tables | 43.9 kB | 0.990 | 0.997 | 20.256 | 35.402 | | | Unmodified | 43.4 kB | 0.991 | 0.997 | 20.432 | 35.364 | | | | 36.5 kB | 0.983 | | | | | | | 60.4 kB | 0.993 | | | | Average over all images in [PLZ+09]. ## Towards a general solution from SNARKs Privacy Preserving Folding Schemes ## Image Provenance from SNARKs [NT16; DB23; DCB25; DEH25; MVVZ25] ## Image Provenance from SNARKs [NT16; DB23; DCB25; DEH25; MVVZ25] #### Image Provenance from SNARKs [NT16; DB23; DCB25; DEH25; MVVZ25] #### Image Provenance from SNARKs [NT16; DB23; DCB25; DEH25; MVVZ25] #### Restating the Problem: ## Computation as a Service #### Restating the Problem: ## Computation as a Service #### Restating the Problem: ## Computation as a Service ## Restating the Problem: Verifiable Computation as a Service ## Restating the Problem: Verifiable Computation as a Service ## Restating the Problem: Verifiable Computation as a Service ## Motivating Example: Verifiable Computation as a Service ## Motivating Example: Verifiable Computation as a Service ## Motivating Example: Verifiable Computation as a Service #### Folding Scheme For NP-language \mathcal{L} with relation $\mathcal{R} = \{(x, v) \mid v \text{ is a proof that } x \in \mathcal{L}\},$ folding scheme FS which #### Folding Scheme For NP-language $\mathcal L$ with relation $$\mathcal{R} = \{(x, v) \mid v \text{ is a proof that } x \in \mathcal{L}\},$$ folding scheme FS which Combines instances: Fold: $$((x_1, v_1), (x_2, v_2)) \rightarrow (x, v, \pi)$$ $(x, v) \in \mathcal{R} \iff (x_1, v_1), (x_2, v_2) \in \mathcal{R}$ #### Folding Scheme For NP-language \mathcal{L} with relation $\mathcal{R} = \{(x, v) \mid v \text{ is a proof that } x \in \mathcal{L}\},$ folding scheme FS which - Combines instances: - Fold: $((x_1, v_1), (x_2, v_2)) \rightarrow (x, v, \pi)$ $(x, v) \in \mathcal{R} \iff (x_1, v_1), (x_2, v_2) \in \mathcal{R}$ - Check statement inclusion FoldVerify: $(x_1, x_2, x, \pi) \rightarrow 0/1$ 1 if π is proof that x_1 and x_2 were folded into x #### Folding Scheme For NP-language \mathcal{L} with relation $\mathcal{R} = \{(x, v) \mid v \text{ is a proof that } x \in \mathcal{L}\},$ folding scheme FS which Combines instances: Fold: $((x_1, v_1), (x_2, v_2)) \rightarrow (x, v, \pi)$ $(x, v) \in \mathcal{R} \iff (x_1, v_1), (x_2, v_2) \in \mathcal{R}$ • Check statement inclusion FoldVerify: $(x_1, x_2, x, \pi) \rightarrow 0/1$ 1 if π is proof that x_1 and x_2 were folded into x #### Example For $A \in \mathbb{F}^{n \times m}$; $\mathcal{L}_A = \{x \mid \exists v \colon Av = x\}$. #### Folding Scheme For NP-language \mathcal{L} with relation $\mathcal{R} = \{(x, v) \mid v \text{ is a proof that } x \in \mathcal{L}\},$ folding scheme FS which - Combines instances: Fold: $((x_1, v_1), (x_2, v_2)) \rightarrow (x, v, \pi)$ $(x, v) \in \mathcal{R} \iff (x_1, v_1), (x_2, v_2) \in \mathcal{R}$ - Check statement inclusion FoldVerify: $(x_1, x_2, x, \pi) \rightarrow 0/1$ 1 if π is proof that x_1 and x_2 were folded into x #### Example For $A \in \mathbb{F}^{n \times m}$; $\mathcal{L}_A = \{x \mid \exists v \colon Av = x\}$. ■ Fold($$(x_1, v_1), (x_2, v_2)$$): $\rho \leftarrow_{\$} \mathbb{F}; \pi = \rho;$ $x = x_1 + \rho x_2; \quad v = v_1 + \rho v_2.$ #### Folding Scheme For NP-language \mathcal{L} with relation $\mathcal{R} = \{(x, v) \mid v \text{ is a proof that } x \in \mathcal{L}\},$ folding scheme FS which - Combines instances: Fold: $((x_1, v_1), (x_2, v_2)) \rightarrow (x, v, \pi)$ $(x, v) \in \mathcal{R} \iff (x_1, v_1), (x_2, v_2) \in \mathcal{R}$ - Check statement inclusion FoldVerify: $(x_1, x_2, x, \pi) \rightarrow 0/1$ 1 if π is proof that x_1 and x_2 were folded into x #### Example For $A \in \mathbb{F}^{n \times m}$; $\mathcal{L}_A = \{x \mid \exists v \colon Av = x\}$. - Fold($(x_1, v_1), (x_2, v_2)$): $\rho \leftarrow_{\$} \mathbb{F}; \pi = \rho;$ $x = x_1 + \rho x_2; \quad v = v_1 + \rho v_2.$ - FoldVerify (x_1, x_2, x, π) : check that $x = x_1 + \rho x_2$. Folding Scheme: Security #### Folding Scheme: Security ■ **Completeness**: No Adv. can output input to Fold in \mathcal{R} , which gives output not in \mathcal{R} (or invalid folding proof). #### Folding Scheme: Security - **Completeness**: No Adv. can output input to Fold in \mathcal{R} , which gives output not in \mathcal{R} (or invalid folding proof). - Knowledge Soundness: From Adv. giving x_1, x_2, x, v, π where $(x, v) \in \mathcal{R}$ and π is accepted, we can extract witness for x_1, x_2 . #### Folding Scheme: Security - **Completeness**: No Adv. can output input to Fold in \mathcal{R} , which gives output not in \mathcal{R} (or invalid folding proof). - Knowledge Soundness: From Adv. giving x_1, x_2, x, v, π where $(x, v) \in \mathcal{R}$ and π is accepted, we can extract witness for x_1, x_2 . #### Example #### Folding Scheme: Security - **Completeness**: No Adv. can output input to Fold in \mathcal{R} , which gives output not in \mathcal{R} (or invalid folding proof). - Knowledge Soundness: From Adv. giving x_1, x_2, x, v, π where $(x, v) \in \mathcal{R}$ and π is accepted, we can extract witness for x_1, x_2 . #### Example ■ Completeness: $(x_1, v_1), (x_2, v_2) \in \mathcal{R}$ then $$Av = A(v_1 + \rho v_2) = Av_1 + \rho Av_2$$ = $x_1 + \rho x_2 = x$ #### Folding Scheme: Security - **Completeness**: No Adv. can output input to Fold in \mathcal{R} , which gives output not in \mathcal{R} (or invalid folding proof). - Knowledge Soundness: From Adv. giving x_1, x_2, x, v, π where $(x, v) \in \mathcal{R}$ and π is accepted, we can extract witness for x_1, x_2 . #### Example ■ Completeness: $(x_1, v_1), (x_2, v_2) \in \mathcal{R}$ then $$Av = A(v_1 + \rho v_2) = Av_1 + \rho Av_2$$ = $x_1 + \rho x_2 = x$ ■ Knowledge Soundness: Run to get $x, v, \pi = \rho$ and $x', v', \pi' = \rho'$ for same input. $$v = v_1 + \rho v_2$$ $$v' = v_1 + \rho' v_2$$ $$\Rightarrow v_2 = (\rho' - \rho)^{-1} (v' - v)$$ From 2-folding to 4-folding #### From 2-folding to 4-folding Output of Fold is in $\mathcal{R}\Rightarrow \textbf{Bootstrapping}$ #### From 2-folding to 4-folding Output of Fold is in $\mathcal{R}\Rightarrow \textbf{Bootstrapping}$ $$(x_1, v_1)$$ (x_2, v_2) (x_3, v_3) (x_4, v_4) # From 2-folding to 4-folding Output of Fold is in $\mathcal{R} \Rightarrow$ **Bootstrapping** (x',v',π') (x_1, v_1) (x_2, v_2) (x_3, v_3) (x_4, v_4) ### From 2-folding to 4-folding Output of Fold is in $\mathcal{R}\Rightarrow \textbf{Bootstrapping}$ ## From 2-folding to 4-folding Output of Fold is in $\mathcal{R} \Rightarrow$ Bootstrapping (x, v, π''') (x'',v'',π'') (x', v', π') (x_1, v_1) (x_2, v_2) (x_3, v_3) (x_4, v_4) $\pi = (\pi', \pi'', \pi''')$ #### From 2-folding to 4-folding Output of Fold is in $\mathcal{R} \Rightarrow \textbf{Bootstrapping}$ #### From 2-folding to *n*-folding Binary tree with n leaves #### But... $|\pi|$ and number of x_i 's needed scales linearly in n. #### But... $|\pi|$ and number of x_i 's needed scales linearly in n. #### Idea Generate n proofs π_i , each containing $O(\log n)$ folding proofs and statements. #### But... $|\pi|$ and number of x_i 's needed scales linearly in n. #### Idea Generate n proofs π_i , each containing $O(\log n)$ folding proofs and statements. #### But... $|\pi|$ and number of x_i 's needed scales linearly in n. #### Idea Generate n proofs π_i , each containing $O(\log n)$ folding proofs and statements. #### Example $\pi_1 = \{x_2, x', \pi', x'', x, \pi'''\}$ #### But... $|\pi|$ and number of x_i 's needed scales linearly in n. #### Idea Generate n proofs π_i , each containing $O(\log n)$ folding proofs and statements. #### Example - $\pi_1 = \{x_2, x', \pi', x'', x, \pi'''\}$ - $\pi_2 = \{x_1, x', \pi', x'', x, \pi'''\}$ - $\pi_3 = \{x_4, x'', \pi'', x', x, \pi'''\}$ - $\pi_4 = \{x_3, x'', \pi'', x', x, \pi'''\}$ Idea Folding scheme hiding others' statements. #### Idea Folding scheme hiding others' statements. #### NP-statement hider Hide each instance (x, v) as another instance (x', v') and generate certificate c that x' hides x. More on these later #### Idea Folding scheme hiding others' statements. #### NP-statement hider Hide each instance (x, v) as another instance (x', v') and generate certificate c that x' hides x. More on these later $$(x_1, v_1)$$ (x_2, v_2) (x_3, v_3) (x_4, v_4) #### Idea Folding scheme hiding others' statements. ### NP-statement hider Hide each instance (x, v) as another instance (x', v') and generate certificate c that x' hides x. More on these later ### Example $\blacksquare \pi_1 = \{x_1', c_1\}$ - $\pi_2 = \{x_2', c_2\}$ - $\pi_3 = \{x_3', c_3\}$ - $\pi_4 = \{x_4', c_4\}$ #### Idea Folding scheme hiding others' statements. #### NP-statement hider Hide each instance (x, v) as another instance (x', v') and generate certificate c that x' hides x. More on these later ### Example - \blacksquare $\pi_1 = \{x'_1, c_1, x'_2, x', \pi', x, \pi'''\}$ - $\blacksquare \ \pi_2 = \{x_2', c_2, x_1', x', \pi', x, \pi'''\}$ - \blacksquare $\pi_3 = \{x_3', c_3, x_4', x'', \pi'', x, \pi'''\}$ - $\pi_4 = \{x_4', c_4, x_3', x'', \pi'', x, \pi'''\}$ ### Security of Privacy Preserving FS IND-CMA flavor: ### Security of Privacy Preserving FS IND-CMA flavor: 1 Adv choose input with 2 options for entry *j* $$(x_1, v_1)$$ (x_2^0, v_2^0) (x_3, v_3) (x_4, v_4) (x_2^1, v_2^1) ### Security of Privacy Preserving FS #### IND-CMA flavor: - 1 Adv choose input with 2 options for entry *j* - 2 Entry j chosen at random $$(x_1, v_1)$$ (x_2^0, v_2^0) (x_3, v_3) (x_4, v_4) (x_2^1, v_2^1) $b \leftarrow_{\$} \{0, 1\}$ ### Security of Privacy Preserving FS #### IND-CMA flavor: - 1 Adv choose input with 2 options for entry *j* - $\mathbf{2}$ Entry \mathbf{j} chosen at random $$(x_1, v_1)$$ (x_2^b, v_2^b) (x_3, v_3) (x_4, v_4) $b \leftarrow_{\$} \{0,1\}$ ### Security of Privacy Preserving FS #### IND-CMA flavor: - 1 Adv choose input with 2 options for entry *j* - $\mathbf{2}$ Entry \mathbf{j} chosen at random - 3 Everything is hidden and folded $$b \leftarrow_\$ \{0,1\}$$ ### Security of Privacy Preserving FS #### IND-CMA flavor: - 1 Adv choose input with 2 options for entry *j* - $\mathbf{2}$ Entry \mathbf{j} chosen at random - 3 Everything is hidden and folded - 4 Adv chooses index ℓ and receives π_{ℓ} $Adv \leftarrow \pi_1$ $$b \leftarrow_{\$} \{0,1\}$$ ### Security of Privacy Preserving FS #### IND-CMA flavor: - 1 Adv choose input with 2 options for entry *j* - $\mathbf{2}$ Entry \mathbf{j} chosen at random - 3 Everything is hidden and folded - 4 Adv chooses index ℓ and receives π_{ℓ} - **5** Guess which (x_i, v_i) was used $$b' \longleftarrow Adv \longleftarrow \pi_1$$ Win if $$b' = b$$ $$b \leftarrow_{\$} \{0,1\}$$ $$(x, v) \longrightarrow \mathsf{Hide} \longrightarrow (x', v', c)$$ $$(x, v) \longrightarrow Hide \longrightarrow (x', v', c)$$ - Completeness - Knowledge Soundness $$(x, v) \longrightarrow Hide \longrightarrow (x', v', c)$$ - Completeness - Knowledge Soundness - Hiding (IND-CMA) $$(x, v) \longrightarrow Hide \longrightarrow (x', v', c)$$ - Completeness - Knowledge Soundness - Hiding (IND-CMA) $$(x_0, v_0)$$ (x_1, v_1) $$(x, v) \longrightarrow Hide \longrightarrow (x', v', c)$$ - Completeness - Knowledge Soundness - Hiding (IND-CMA) $$(x_0, v_0)$$ (x_1, v_1) $b \leftarrow_{\$} \{0, 1\}$ $$(x, v) \longrightarrow Hide \longrightarrow (x', v', c)$$ - Completeness - Knowledge Soundness - Hiding (IND-CMA) $$(x_b, v_b)$$ $$b \leftarrow_{\$} \{0, 1\}$$ $$(x, v) \longrightarrow Hide \longrightarrow (x', v', c)$$ - Completeness - Knowledge Soundness - Hiding (IND-CMA) $$(x_b, v_b) \longrightarrow \text{Hide} \longrightarrow (x', v', c)$$ $$b \leftarrow_{\$} \{0,1\}$$ $$(x, v) \longrightarrow Hide \longrightarrow (x', v', c)$$ - Completeness - Knowledge Soundness - Hiding (IND-CMA) $$(x_b, v_b) \longrightarrow \mathsf{Hide} \longrightarrow (x', v', c)$$ $$b \leftarrow_{\$} \{0, 1\}$$ $$(x', v') \longrightarrow \mathsf{Ady}$$ $$(x, v) \longrightarrow Hide \longrightarrow (x', v', c)$$ - Completeness - Knowledge Soundness - Hiding (IND-CMA) $$(x_b, v_b) \longrightarrow \mathsf{Hide} \longrightarrow (x', v', c)$$ $b \leftarrow_{\$} \{0, 1\}$ $(x', v') \rightarrow \mathsf{Adv} \longrightarrow b'$ #### NP-statement hider $$(x, v) \longrightarrow Hide \longrightarrow (x', v', c)$$ - Completeness - Knowledge Soundness - Hiding (IND-CMA) $$(x_b, v_b) \longrightarrow \mathsf{Hide} \longrightarrow (x', v', c)$$ $b \leftarrow_{\$} \{0, 1\}$ $(x', v') \longrightarrow \mathsf{Adv} \longrightarrow b'$ #### Claim Composing a Folding Scheme with an NP-statement hider gives a Privacy Preserving Folding Scheme. ### Folding with random instance To hide (x, v): - **1** Generate random instance (x_r, v_r) . - 2 Fold: $$(x', v', \pi) \leftarrow \mathsf{Fold}((x, v), (x_r, v_r))$$ **3** Output $(x', v', c = (\pi, x_r))$. ### Folding with random instance To hide (x, v): - **1** Generate random instance (x_r, v_r) . - 2 Fold: $$(x', v', \pi) \leftarrow \mathsf{Fold}((x, v), (x_r, v_r))$$ 3 Output $(x', v', c = (\pi, x_r))$. #### Recall $$\mathcal{L}_A = \{x \mid \exists v \colon Av = x\}$$ Fold($$(x_1, v_1), (x_2, v_2)$$): $\rho \leftarrow_{\$} \mathbb{F}; \pi = \rho;$ $$x = x_1 + \rho x_2;$$ $v = v_1 + \rho v_2.$ $$\mathbf{v} = \mathbf{v}_1 + \rho \mathbf{v}_2$$ ### Example ### Folding with random instance To hide (x, v): - **1** Generate random instance (x_r, v_r) . - 2 Fold: $$(x',v',\pi) \leftarrow \mathsf{Fold}((x,v),(x_r,v_r))$$ **3** Output $(x', v', c = (\pi, x_r))$. #### Recall $$\mathcal{L}_A = \{x \mid \exists v \colon Av = x\}$$ Fold($$(x_1, v_1), (x_2, v_2)$$): $\rho \leftarrow_{\$} \mathbb{F}; \pi = \rho;$ $x = x_1 + \rho x_2; \quad v = v_1 + \rho v_2.$ ### Example ${\rm 1\!\!1}$ Generate random instance in ${\cal R}$ as $$v_r \leftarrow_{\$} \mathbb{F}^m; \qquad x_r = Av_r.$$ ### Folding with random instance To hide (x, v): - **1** Generate random instance (x_r, v_r) . - 2 Fold: $$(x', v', \pi) \leftarrow \mathsf{Fold}((x, v), (x_r, v_r))$$ **3** Output $(x', v', c = (\pi, x_r))$. #### Recall $$\mathcal{L}_A = \{x \mid \exists v \colon Av = x\}$$ Fold($$(x_1, v_1), (x_2, v_2)$$): $\rho \leftarrow_{\$} \mathbb{F}; \pi = \rho;$ $x = x_1 + \rho x_2; \quad v = v_1 + \rho v_2.$ ### Example 1 Generate random instance in \mathcal{R} as $$v_r \leftarrow_{\$} \mathbb{F}^m; \qquad x_r = Av_r.$$ 2 Hide by folding $Hide((x, v), (x_r, v_r))$: $$(x_r, v_r)$$: $\rho \leftarrow_{\$} \mathbb{F}$ $x' = x_1 + \rho x_r$ $y' = v_1 + \rho v_r$. ### Folding with random instance To hide (x, v): - **1** Generate random instance (x_r, v_r) . - 2 Fold: $$(x',v',\pi) \leftarrow \mathsf{Fold}((x,v),(x_r,v_r))$$ **3** Output $(x', v', c = (\pi, x_r))$. #### Recall $$\mathcal{L}_A = \{x \mid \exists v \colon Av = x\}$$ Fold($$(x_1, v_1), (x_2, v_2)$$): $\rho \leftarrow_{\$} \mathbb{F}; \pi = \rho;$ $x = x_1 + \rho x_2; \quad v = v_1 + \rho v_2.$ ### Example 1 Generate random instance in $\mathcal R$ as $$v_r \leftarrow_{\$} \mathbb{F}^m; \qquad x_r = Av_r.$$ 2 Hide by folding $Hide((x, v), (x_r, v_r))$: $$(v), (x_r, v_r)):$$ $\rho \leftarrow_{\$} \mathbb{F}$ $x' = x_1 + \rho x_r$ $y' = v_1 + \rho v_r.$ **3** Output $(x', v', c = (\rho, x_r))$. ### Example is secure Can Adv distinguish if (x, v) hides (x_1, v_1) or (x_2, v_2) ? ### Example is secure Can Adv distinguish if (x, v) hides (x_1, v_1) or (x_2, v_2) ? Assume $$(x, v)$$ hides (x_1, v_1) using (x_r, v_r) : $$x = x_1 + \rho x_r$$ $$v = v_1 + \rho v_r.$$ ### Example is secure Can Adv distinguish if (x, v) hides (x_1, v_1) or (x_2, v_2) ? Assume $$(x, v)$$ hides (x_1, v_1) using (x_r, v_r) : $x = x_1 + \rho x_r$ $$x = x_1 + \rho x_r$$ $$v = v_1 + \rho v_r.$$ (x, v) is equally likely to hide (x_2, v_2) if there is $(x'_r, v'_r) \in \mathcal{R}_A$ such that: $$x_2 + \rho' x_r' = x_1 + \rho x_r$$ $v_2 + \rho' v_r' = v_1 + \rho v_r$. Simon Erfurth ### Example is secure Can Adv distinguish if (x, v) hides (x_1, v_1) or (x_2, v_2) ? Assume $$(x, v)$$ hides (x_1, v_1) using (x_r, v_r) : $$x = x_1 + \rho x_r$$ $$v = v_1 + \rho v_r$$. (x, v) is equally likely to hide (x_2, v_2) if there is $(x'_r, v'_r) \in \mathcal{R}_A$ such that: $$x_2 + \rho' x'_r = x_1 + \rho x_r$$ $v_2 + \rho' v'_r = v_1 + \rho v_r$. So we must have Simon Erfurth $$x'_r = (\rho')^{-1}(x_1 + \rho x_r - x_2)$$ $$v'_r = (\rho')^{-1}(v_1 + \rho v_r - v_2)$$ ### Example is secure Can Adv distinguish if (x, v) hides (x_1, v_1) or (x_2, v_2) ? Assume $$(x, v)$$ hides (x_1, v_1) using (x_r, v_r) : $$x = x_1 + \rho x_r$$ $$v = v_1 + \rho v_r$$. (x, v) is equally likely to hide (x_2, v_2) if there is $(x'_r, v'_r) \in \mathcal{R}_A$ such that: $$x_2 + \rho' x'_r = x_1 + \rho x_r$$ $v_2 + \rho' v'_r = v_1 + \rho v_r$. So we must have $$x'_r = (\rho')^{-1}(x_1 + \rho x_r - x_2)$$ $$v'_r = (\rho')^{-1}(v_1 + \rho v_r - v_2)$$ But is this in \mathcal{R}_A ? #### NP-statement hider: Example #### Example is secure Can Adv distinguish if (x, v) hides (x_1, v_1) or (x_2, v_2) ? Assume $$(x, v)$$ hides (x_1, v_1) using (x_r, v_r) : $$x = x_1 + \rho x_r$$ $$v = v_1 + \rho v_r.$$ (x, v) is equally likely to hide (x_2, v_2) if there is $(x'_r, v'_r) \in \mathcal{R}_A$ such that: $$x_2 + \rho' x'_r = x_1 + \rho x_r$$ $v_2 + \rho' v'_r = v_1 + \rho v_r$. So we must have $$x'_r = (\rho')^{-1}(x_1 + \rho x_r - x_2)$$ $$v'_r = (\rho')^{-1}(v_1 + \rho v_r - v_2)$$ But is this in \mathcal{R}_A ? $$Av'_{r} = A(\rho')^{-1}(v_{1} + \rho v_{r} - v_{2})$$ $$= (\rho')^{-1}(Av_{1} + \rho Av_{r} - Av_{2})$$ $$= (\rho')^{-1}(x_{1}\rho x_{r} - x_{2})$$ $$= x'_{r}$$ #### NP-statement hider: Example #### Example is secure Can Adv distinguish if (x, v) hides (x_1, v_1) or (x_2, v_2) ? Assume $$(x, v)$$ hides (x_1, v_1) using (x_r, v_r) : $$x = x_1 + \rho x_r$$ $v = v_1 + \rho v_r$ #### Theorem There is a privacy preserving folding scheme for $\mathcal{L}_A = \text{Im}(A)$. (x, v) is equally likely to hide (x_2, v_2) if there is $(x'_r, v'_r) \in \mathcal{R}_A$ such that: $$x_2 + \rho' x'_r = x_1 + \rho x_r$$ $v_2 + \rho' v'_r = v_1 + \rho v_r$. So we must have $$x'_r = (\rho')^{-1}(x_1 + \rho x_r - x_2)$$ $$v'_r = (\rho')^{-1}(v_1 + \rho v_r - v_2)$$ But is this in \mathcal{R}_A ? $$Av'_{r} = A(\rho')^{-1}(v_{1} + \rho v_{r} - v_{2})$$ $$= (\rho')^{-1}(Av_{1} + \rho Av_{r} - Av_{2})$$ $$= (\rho')^{-1}(x_{1}\rho x_{r} - x_{2})$$ $$= x'_{r}$$ #### In general... #### NP-statement hider If there is a folding scheme for \mathcal{L} , \mathcal{R} supports efficient random sampling, and for any three instances $(x_1, v_1), (x_2, v_2), (x, v) \in \mathcal{R}$ there are equally many ways to fold (x_1, v_1) into (x, v) as there is to fold (x_2, v_2) into (x, v), then there is an NP-statement hider for \mathcal{L} . #### In general... #### NP-statement hider If there is a folding scheme for \mathcal{L} , \mathcal{R} supports efficient random sampling, and for any three instances $(x_1, v_1), (x_2, v_2), (x, v) \in \mathcal{R}$ there are equally many ways to fold (x_1, v_1) into (x, v) as there is to fold (x_2, v_2) into (x, v), then there is an NP-statement hider for \mathcal{L} . #### Privacy Preserving Folding Scheme As above: There is a Privacy Preserving Folding Scheme for \mathcal{L} . # Thank you for listening. Questions? #### References I - [BE24] Joan Boyar and Simon Erfurth. "Folding Schemes with Privacy Preserving Selective Verification". In: *IACR Communications in Cryptology* 1.4 (2024). DOI: 10.62056/a0iv4fe-3. - [DB23] Trisha Datta and Dan Boneh. Using ZK Proofs to Fight Disinformation. https://medium.com/@boneh/using-zk-proofs-to-fight-disinformation-17e7d57fe52f. 2023. (Visited on 11/28/2023). - [DCB25] Trisha Datta, Binyi Chen, and Dan Boneh. "VerITAS: Verifying Image Transformations at Scale". In: IEEE Symposium on Security and Privacy -S&P 2025. IEEE Computer Society, 2025. DOI: 10.1109/SP61157.2025.00097. #### References II - [DEH25] Stefan Dziembowski, Shahriar Ebrahimi, and Parisa Hassanizadeh. "VIMz: Verifiable Image Manipulation using Folding-based zkSNARKs". In: *Proc. Priv. Enhancing Technol.* 2025.2 (2025). URL: https://eprint.iacr.org/2024/1063. - [JWL11] Rob Johnson, Leif Walsh, and Michael Lamb. "Homomorphic Signatures for Digital Photographs". In: *Financial Cryptography and Data Security FC 2011*. Vol. 7035. Lecture Notes in Computer Science. Springer, 2011, pp. 141–157. DOI: 10.1007/978-3-642-27576-0_12. - [KST22] Abhiram Kothapalli, Srinath T. V. Setty, and Ioanna Tzialla. "Nova: Recursive Zero-Knowledge Arguments from Folding Schemes". In: Advances in Cryptology CRYPTO 2022. Vol. 13510. Lecture Notes in Computer Science. Springer, 2022, pp. 359–388. DOI: 10.1007/978-3-031-15985-5_13. #### References III - [MVVZ25] Pierpaolo Della Monica, Ivan Visconti, Andrea Vitaletti, and Marco Zecchini. "Trust Nobody: Privacy-Preserving Proofs for Edited Photos with Your Laptop". In: *IEEE Symposium on Security and Privacy S&P 2025*. IEEE Computer Society, 2025. DOI: 10.1109/SP61157.2025.00014. - [NT16] Assa Naveh and Eran Tromer. "PhotoProof: Cryptographic Image Authentication for Any Set of Permissible Transformations". In: *IEEE Symposium on Security and Privacy S&P 2016*. IEEE Computer Society, 2016, pp. 255–271. DOI: 10.1109/SP.2016.23. #### References IV ``` [PLZ+09] Nikolay Ponomarenko, Vladimir Lukin, Alexander Zelensky, Karen Egiazarian, Marco Carli, and Federica Battisti. "TID2008 — A Database for Evaluation of Full-Reference Visual Quality Assessment Metrics". In: Advances of Modern Radioelectronics 10.4 (2009), pp. 30–45. URL: https://www.ponomarenko.info/papers/mre2009tid.pdf. ``` [RZ23] Carla Ràfols and Alexandros Zacharakis. "Folding Schemes with Selective Verification". In: Progress in Cryptology - LATINCRYPT 2023. Vol. 14168. Lecture Notes in Computer Science. Springer, 2023, pp. 229–248. DOI: 10.1007/978-3-031-44469-2_12. Made using icons from flaticon.com. ## Privacy Preserving Folding Scheme [BE24] ## Privacy Preserving Folding Scheme [BE24] **Computation Time Signature Size** | | Computation Time | Signature Size | |----------------|------------------------------|----------------| | Key generation | Same as KeyGen ^{DS} | | | | Computation Time | Signature Size | |----------------|-----------------------------------------------|----------------| | Key generation | Same as KeyGen ^{DS} | _ | | Signing | 1025 hashes and
time of Sign ^{DS} | 5 | | | Computation Time | Signature Size | |----------------|---|----------------| | Key generation | Same as KeyGen ^{DS} | _ | | Signing | 1025 hashes and
time of Sign ^{DS} | 5 | | Compression | 1025 hashes | 128 H + S | | | Computation Time | Signature Size | |----------------|---|----------------| | Key generation | Same as KeyGen ^{DS} | _ | | Signing | 1025 hashes and
time of Sign ^{DS} | 5 | | Compression | 1025 hashes | 128 H + S | | Verification | 1025 hashes and
time of Verify ^{DS} | _ | If $\forall k$: i^* 's h_{root} is different from i_k 's h_{root} : Forgery against DS. Else let k be such that i^* and i_k have the same h_{root} . If $h_{B_{0,0}}$ is different for i^* and i^k : Collision for H: $$H(\cdots,h_{B_{0,0}}^*,\cdots)=h_{root}=H(\cdots,h_{B_{0,0}}^k,\cdots).$$ Else let k be such that i^* and i_k have the same h_{root} . If $h_{B_{0,0}}$ is different for i^* and i^k : Collision for H: $$H(\cdots, h_{B_{0,0}}^*, \cdots) = h_{root} = H(\cdots, h_{B_{0,0}}^k, \cdots).$$ Else move on. Else let k be such that i^* and i_k have the same h_{root} . If h_{B_0} is different for i^* and i^k : Collision for H: $$H(\cdots, h_{B_{0,0}}^*, \cdots) = h_{root} = H(\cdots, h_{B_{0,0}}^k, \cdots).$$ Else move on. 31 / 31 Else let k be such that i^* and i_k have the same h_{root} . If $h_{B_{0,0}}$ is different for i^* and i^k : Collision for H: $$H(\cdots,h_{B_{0,0}}^*,\cdots)=h_{root}=H(\cdots,h_{B_{0,0}}^k,\cdots).$$ Else move on. Else let k be such that i^* and i_k have the same h_{root} . If h_{B_0} is different for i^* and i^k : Collision for H: $$H(\cdots, h_{B_{0,0}}^*, \cdots) = h_{root} = H(\cdots, h_{B_{0,0}}^k, \cdots).$$ Else move on. Either we have found $h_{B_{i,j}}^* \neq h_{B_{i,j}}^k$ and a collision to H. Or we go one level deeper for each $h_{B_{i,i}}$. Or we go one level deeper for each $h_{B_{i,j}}$. Or we go one level deeper for each $h_{B_{i,j}}$. Since $i^* \notin \mathsf{CSpan}(i_k, s_k)$ we are guaranteed tho eventually find a difference Or we go one level deeper for each $h_{B_{i,j}}$. Since $i^* \notin \mathsf{CSpan}(i_k, s_k)$ we are guaranteed tho eventually find a difference, and hence a collision for H.